{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T19:39:09Z","timestamp":1726083549680},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030474256"},{"type":"electronic","value":"9783030474263"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-47426-3_24","type":"book-chapter","created":{"date-parts":[[2020,5,8]],"date-time":"2020-05-08T06:02:49Z","timestamp":1588917769000},"page":"305-317","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Deep Multimodal Clustering with Cross Reconstruction"],"prefix":"10.1007","author":[{"given":"Xianchao","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Xiaorui","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Linlin","family":"Zong","sequence":"additional","affiliation":[]},{"given":"Xinyue","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Mu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,6]]},"reference":[{"key":"24_CR1","doi-asserted-by":"crossref","unstructured":"Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: SIGMOD Conference (1998)","DOI":"10.1145\/276304.276314"},{"key":"24_CR2","unstructured":"Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. ArXiv abs\/1612.00410 (2016)"},{"key":"24_CR3","unstructured":"Andrew, G., Arora, R., Bilmes, J.A., Livescu, K.: Deep canonical correlation analysis. In: ICML (2013)"},{"key":"24_CR4","unstructured":"Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. ArXiv abs\/1701.07875 (2017)"},{"key":"24_CR5","doi-asserted-by":"crossref","unstructured":"Cai, X., Nie, F., Huang, H., Kamangar, F.: Heterogeneous image feature integration via multi-modal spectral clustering. In: CVPR, pp. 1977\u20131984 (2011)","DOI":"10.1109\/CVPR.2011.5995740"},{"key":"24_CR6","doi-asserted-by":"crossref","unstructured":"Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity-induced multi-view subspace clustering. In: CVPR, pp. 586\u2013594 (2015)","DOI":"10.1109\/CVPR.2015.7298657"},{"key":"24_CR7","unstructured":"Chen, G.: Deep learning with nonparametric clustering. ArXiv abs\/1501.03084 (2015)"},{"key":"24_CR8","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1016\/j.acha.2006.04.006","volume":"21","author":"RR Coifman","year":"2006","unstructured":"Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21, 5\u201330 (2006)","journal-title":"Appl. Comput. Harmonic Anal."},{"key":"24_CR9","unstructured":"Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: CVPR, vol. 2, pp. 524\u2013531 (2005)"},{"key":"24_CR10","unstructured":"Gao, J., Han, J., Liu, J., Wang, C.: Multi-view clustering via joint nonnegative matrix factorization. In: SDM (2013)"},{"key":"24_CR11","unstructured":"Goodfellow, I.J.: NIPS 2016 tutorial: Generative adversarial networks. ArXiv abs\/1701.00160 (2016)"},{"key":"24_CR12","doi-asserted-by":"crossref","unstructured":"Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI (2017)","DOI":"10.24963\/ijcai.2017\/243"},{"key":"24_CR13","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR abs\/1312.6114 (2013)"},{"key":"24_CR14","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","volume":"17","author":"U von Luxburg","year":"2007","unstructured":"von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395\u2013416 (2007)","journal-title":"Stat. Comput."},{"key":"24_CR15","unstructured":"Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In: NIPS (2005)"},{"key":"24_CR16","unstructured":"Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: ICML (2011)"},{"key":"24_CR17","doi-asserted-by":"crossref","unstructured":"Peng, X., Xiao, S., Feng, J., Yau, W.Y., Yi, Z.: Deep subspace clustering with sparsity prior. In: IJCAI (2016)","DOI":"10.1609\/aaai.v31i1.10824"},{"key":"24_CR18","unstructured":"Shaham, U., Stanton, K.P., Li, H., Nadler, B., Basri, R., Kluger, Y.: SpectralNet: spectral clustering using deep neural networks. ArXiv abs\/1801.01587 (2018)"},{"key":"24_CR19","first-page":"2949","volume":"15","author":"N Srivastava","year":"2012","unstructured":"Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines. J. Mach. Learn. Res. 15, 2949\u20132980 (2012)","journal-title":"J. Mach. Learn. Res."},{"key":"24_CR20","doi-asserted-by":"crossref","unstructured":"Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.Y.: Learning deep representations for graph clustering. In: AAAI (2014)","DOI":"10.1609\/aaai.v28i1.8916"},{"key":"24_CR21","unstructured":"Wang, W., Arora, R., Livescu, K., Bilmes, J.A.: On deep multi-view representation learning. In: ICML (2015)"},{"key":"24_CR22","doi-asserted-by":"crossref","unstructured":"Wang, X., Guo, X., Lei, Z., Zhang, C., Li, S.Z.: Exclusivity-consistency regularized multi-view subspace clustering. In: CVPR, pp. 1\u20139 (2017)","DOI":"10.1109\/CVPR.2017.8"},{"key":"24_CR23","unstructured":"Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML (2015)"},{"key":"24_CR24","doi-asserted-by":"crossref","unstructured":"Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: CVPR, pp. 5147\u20135156 (2016)","DOI":"10.1109\/CVPR.2016.556"},{"key":"24_CR25","doi-asserted-by":"crossref","unstructured":"Zhang, C., Fu, H., Liu, S., Liu, G., Cao, X.: Low-rank tensor constrained multiview subspace clustering. In: ICCV, pp. 1582\u20131590 (2015)","DOI":"10.1109\/ICCV.2015.185"}],"container-title":["Lecture Notes in Computer Science","Advances in Knowledge Discovery and Data Mining"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-47426-3_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,23]],"date-time":"2022-10-23T08:36:13Z","timestamp":1666514173000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-47426-3_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030474256","9783030474263"],"references-count":25,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-030-47426-3_24","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"6 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PAKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific-Asia Conference on Knowledge Discovery and Data Mining","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 May 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 May 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pakdd2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.pakdd2020.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT System","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"628","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"135","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6-8","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}