iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-43722-0_3
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T18:32:18Z","timestamp":1726079538154},"publisher-location":"Cham","reference-count":38,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030437213"},{"type":"electronic","value":"9783030437220"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-43722-0_3","type":"book-chapter","created":{"date-parts":[[2020,4,8]],"date-time":"2020-04-08T23:04:05Z","timestamp":1586387045000},"page":"37-53","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Optimizing the Hyperparameters of a Mixed Integer Linear Programming Solver to Speed up Electric Vehicle Charging Control"],"prefix":"10.1007","author":[{"given":"Takahiro","family":"Ishihara","sequence":"first","affiliation":[]},{"given":"Steffen","family":"Limmer","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,4,9]]},"reference":[{"key":"3_CR1","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1016\/j.trc.2012.10.011","volume":"28","author":"RA Waraich","year":"2013","unstructured":"Waraich, R.A., Galus, M.D., Dobler, C., Balmer, M., Andersson, G., Axhausen, K.W.: Plug-in hybrid electric vehicles and smart grids: investigations based on a microsimulation. Transp. Res. Part C: Emerg. Technol. 28, 74\u201386 (2013)","journal-title":"Transp. Res. Part C: Emerg. Technol."},{"issue":"3","key":"3_CR2","doi-asserted-by":"publisher","first-page":"1021","DOI":"10.1109\/TPWRS.2010.2086083","volume":"26","author":"N Rotering","year":"2011","unstructured":"Rotering, N., Ilic, M.: Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets. IEEE Trans. Power Syst. 26(3), 1021\u20131029 (2011)","journal-title":"IEEE Trans. Power Syst."},{"issue":"6","key":"3_CR3","doi-asserted-by":"publisher","first-page":"4447","DOI":"10.1109\/TPWRS.2016.2518648","volume":"31","author":"C Goebel","year":"2016","unstructured":"Goebel, C., Jacobsen, H.A.: Aggregator-controlled EV charging in pay-as-bid reserve markets with strict delivery constraints. IEEE Trans. Power Syst. 31(6), 4447\u20134461 (2016)","journal-title":"IEEE Trans. Power Syst."},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Mehta, R., Srinivasan, D., Trivedi, A.: Optimal charging scheduling of plug-in electric vehicles for maximizing penetration within a workplace car park. In: IEEE Congress on Evolutionary Computation (CEC), pp. 3646\u20133653 (2016)","DOI":"10.1109\/CEC.2016.7744251"},{"issue":"1","key":"3_CR5","doi-asserted-by":"publisher","first-page":"198","DOI":"10.1109\/TSG.2010.2090913","volume":"2","author":"E Sortomme","year":"2011","unstructured":"Sortomme, E., Hindi, M.M., MacPherson, S.D.J., Venkata, S.S.: Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses. IEEE Trans. Smart Grid 2(1), 198\u2013205 (2011)","journal-title":"IEEE Trans. Smart Grid"},{"issue":"1","key":"3_CR6","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1109\/TSG.2012.2218834","volume":"4","author":"C Jin","year":"2013","unstructured":"Jin, C., Tang, J., Ghosh, P.: Optimizing electric vehicle charging with energy storage in the electricity market. IEEE Trans. Smart Grid 4(1), 311\u2013320 (2013)","journal-title":"IEEE Trans. Smart Grid"},{"issue":"4","key":"3_CR7","doi-asserted-by":"publisher","first-page":"2163","DOI":"10.1109\/TSG.2014.2318836","volume":"5","author":"L Igualada","year":"2014","unstructured":"Igualada, L., Corchero, C., Cruz-Zambrano, M., Heredia, F.J.: Optimal energy management for a residential microgrid including a vehicle-to-grid system. IEEE Trans. Smart Grid 5(4), 2163\u20132172 (2014)","journal-title":"IEEE Trans. Smart Grid"},{"issue":"5","key":"3_CR8","doi-asserted-by":"publisher","first-page":"2200","DOI":"10.1109\/TSG.2015.2394489","volume":"6","author":"JF Franco","year":"2015","unstructured":"Franco, J.F., Rider, M.J., Romero, R.: A mixed-integer linear programming model for the electric vehicle charging coordination problem in unbalanced electrical distribution systems. IEEE Trans. Smart Grid 6(5), 2200\u20132210 (2015)","journal-title":"IEEE Trans. Smart Grid"},{"issue":"6","key":"3_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/en11061416","volume":"11","author":"I Naharudinsyah","year":"2018","unstructured":"Naharudinsyah, I., Limmer, S.: Optimal charging of electric vehicles with trading on the intraday electricity market. Energies 11(6), 1\u201311 (2018)","journal-title":"Energies"},{"key":"3_CR10","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1016\/j.ijepes.2019.05.031","volume":"113","author":"S Limmer","year":"2019","unstructured":"Limmer, S., Rodemann, T.: Peak load reduction through dynamic pricing for electric vehicle charging. Int. J. Electr. Power Energy Syst. 113, 117\u2013128 (2019)","journal-title":"Int. J. Electr. Power Energy Syst."},{"key":"3_CR11","unstructured":"IBM ILOG CPLEX. https:\/\/www.ibm.com\/analytics\/cplex-optimizer. Accessed Jan 2020"},{"key":"3_CR12","unstructured":"Gurobi. https:\/\/www.gurobi.com\/. Accessed Jan 2020"},{"key":"3_CR13","unstructured":"Fico Xpress. https:\/\/www.fico.com\/fico-xpress-optimization\/docs\/latest\/overview.html. Accessed Jan 2020"},{"key":"3_CR14","unstructured":"CBC Solver. https:\/\/projects.coin-or.org\/Cbc. Accessed Jan 2020"},{"key":"3_CR15","unstructured":"lp\\_solve. http:\/\/lpsolve.sourceforge.net\/5.5\/. Accessed Jan 2020"},{"key":"3_CR16","unstructured":"Gleixner, A., et al.: The SCIP optimization suite 5.0. Technical report 17-61, ZIB, Berlin (2017)"},{"key":"3_CR17","first-page":"43","volume":"3","author":"M L\u00f3pez-Ib\u00e1\u00f1ez","year":"2016","unstructured":"L\u00f3pez-Ib\u00e1\u00f1ez, M., Dubois-Lacoste, J., C\u00e1ceres, L.P., Birattari, M., St\u00fctzle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43\u201358 (2016)","journal-title":"Oper. Res. Perspect."},{"key":"3_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"507","DOI":"10.1007\/978-3-642-25566-3_40","volume-title":"Learning and Intelligent Optimization","author":"F Hutter","year":"2011","unstructured":"Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507\u2013523. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-25566-3_40"},{"key":"3_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"542","DOI":"10.1007\/978-3-642-12239-2_56","volume-title":"Applications of Evolutionary Computation","author":"SK Smit","year":"2010","unstructured":"Smit, S.K., Eiben, A.E.: Parameter tuning of evolutionary algorithms: generalist vs. specialist. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 542\u2013551. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-12239-2_56"},{"key":"3_CR20","doi-asserted-by":"crossref","unstructured":"Roman, I., Ceberio, J., Mendiburu, A., Lozano, J.A.: Bayesian optimization for parameter tuning in evolutionary algorithms. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4839\u20134845 (2016)","DOI":"10.1109\/CEC.2016.7744410"},{"key":"3_CR21","series-title":"The Springer Series on Challenges in Machine Learning","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-05318-5_1","volume-title":"Automated Machine Learning","author":"M Feurer","year":"2019","unstructured":"Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3\u201333. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-05318-5_1"},{"key":"3_CR22","unstructured":"Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Proceedings of the 28th NIPS, pp. 2755\u20132763. MIT Press (2015)"},{"key":"3_CR23","unstructured":"Koripalli, R.S.: Parameter tuning for optimization software. Master\u2019s thesis, Virginia Commonwealth University, Richmond, Virginia (2012)"},{"key":"3_CR24","unstructured":"Sorrell, T.P.: Tuning optimization software parameters for mixed ineteger programming problems. Ph.D. thesis, Virginia Commonwealth University, Richmond, Virginia (2017)"},{"issue":"2","key":"3_CR25","first-page":"3","volume":"1","author":"S Smirnov","year":"2016","unstructured":"Smirnov, S.: Tuning parameters of a mixed integer programming solver in the cloud. Int. Sci. J. \u201cSci. Bus. Soc.\u201d 1(2), 3\u20135 (2016)","journal-title":"Int. Sci. J. \u201cSci. Bus. Soc.\u201d"},{"key":"3_CR26","unstructured":"Baz, M., Brooks, J.P., Gosavi, A., Hunsaker, B.: Automated tuning of optimization software parameters. Technical report. University of Pittsburgh Department of Industrial Engineering, Pittsburgh, PA (2007)"},{"key":"3_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"186","DOI":"10.1007\/978-3-642-13520-0_23","volume-title":"Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems","author":"F Hutter","year":"2010","unstructured":"Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186\u2013202. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-13520-0_23"},{"issue":"3","key":"3_CR28","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1016\/j.ejor.2013.10.043","volume":"235","author":"M L\u00f3pez-Ib\u00e1\u00f1ez","year":"2014","unstructured":"L\u00f3pez-Ib\u00e1\u00f1ez, M., St\u00fctzle, T.: Automatically improving the anytime behaviour of optimisation algorithms. Eur. J. Oper. Res. 235(3), 569\u2013582 (2014)","journal-title":"Eur. J. Oper. Res."},{"key":"3_CR29","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1162\/106365601750190398","volume":"9","author":"N Hansen","year":"2001","unstructured":"Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159\u2013195 (2001)","journal-title":"Evol. Comput."},{"issue":"1","key":"3_CR30","first-page":"267","volume":"36","author":"F Hutter","year":"2009","unstructured":"Hutter, F., Hoos, H.H., Leyton-Brown, K., St\u00fctzle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Int. Res. 36(1), 267\u2013306 (2009)","journal-title":"J. Artif. Int. Res."},{"key":"3_CR31","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1007\/978-3-642-04244-7_14","volume-title":"Principles and Practice of Constraint Programming - CP 2009","author":"C Ans\u00f3tegui","year":"2009","unstructured":"Ans\u00f3tegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142\u2013157. Springer, Heidelberg (2009). https:\/\/doi.org\/10.1007\/978-3-642-04244-7_14"},{"issue":"4","key":"3_CR32","doi-asserted-by":"publisher","first-page":"455","DOI":"10.1023\/A:1008306431147","volume":"13","author":"DR Jones","year":"1998","unstructured":"Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455\u2013492 (1998)","journal-title":"J. Global Optim."},{"key":"3_CR33","series-title":"Operations Research Proceedings","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1007\/978-3-540-77903-2_5","volume-title":"Operations Research Proceedings 2007","author":"T Berthold","year":"2008","unstructured":"Berthold, T.: Heuristics of the branch-cut-and-price-framework SCIP. In: Kalcsics, J., Nickel, S. (eds.) Operations Research Proceedings 2007. ORP, vol. 2007, pp. 31\u201336. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-77903-2_5"},{"key":"3_CR34","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1016\/j.egypro.2015.07.667","volume":"73","author":"C Ma","year":"2015","unstructured":"Ma, C., Rautiainen, J., Dahlhaus, D., Lakshman, A., Toebermann, J.C., Braun, M.: Online optimal charging strategy for electric vehicles. Energy Procedia 73, 173\u2013181 (2015). 9th International Renewable Energy Storage Conference, IRES 2015","journal-title":"Energy Procedia"},{"key":"3_CR35","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1016\/j.automatica.2016.01.006","volume":"67","author":"R Vujanic","year":"2016","unstructured":"Vujanic, R., Esfahani, P.M., Goulart, P.J., Mari\u00e9thoz, S., Morari, M.: A decomposition method for large scale MILPs, with performance guarantees and a power system application. Automatica 67, 144\u2013156 (2016)","journal-title":"Automatica"},{"issue":"7","key":"3_CR36","doi-asserted-by":"publisher","first-page":"933","DOI":"10.3390\/en10070933","volume":"10","author":"J Han","year":"2017","unstructured":"Han, J., Park, J., Lee, K.: Optimal scheduling for electric vehicle charging under variable maximum charging power. Energies 10(7), 933 (2017)","journal-title":"Energies"},{"issue":"2","key":"3_CR37","doi-asserted-by":"publisher","first-page":"265","DOI":"10.3390\/en12020265","volume":"12","author":"T Mao","year":"2019","unstructured":"Mao, T., Zhang, X., Zhou, B.: Intelligent energy management algorithms for EV-charging scheduling with consideration of multiple EV charging modes. Energies 12(2), 265 (2019)","journal-title":"Energies"},{"key":"3_CR38","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-16692-2_1","volume-title":"Applications of Evolutionary Computation","author":"T Rodemann","year":"2019","unstructured":"Rodemann, T.: A comparison of different many-objective optimization algorithms for energy system optimization. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 3\u201318. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-16692-2_1"}],"container-title":["Lecture Notes in Computer Science","Applications of Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-43722-0_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,3,4]],"date-time":"2021-03-04T20:18:37Z","timestamp":1614889117000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-43722-0_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030437213","9783030437220"],"references-count":38,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-030-43722-0_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"9 April 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EvoApplications","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on the Applications of Evolutionary Computation (Part of EvoStar)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Seville","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 April 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 April 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"evoapplications2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.evostar.org\/2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"62","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"71% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.68","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.25","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}