iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-34833-5_9
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T12:49:08Z","timestamp":1726058948884},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030348328"},{"type":"electronic","value":"9783030348335"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-34833-5_9","type":"book-chapter","created":{"date-parts":[[2019,11,15]],"date-time":"2019-11-15T13:02:56Z","timestamp":1573822976000},"page":"103-113","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Towards Body Sensor Network Based Gait Abnormality Evaluation for Stroke Survivors"],"prefix":"10.1007","author":[{"given":"Sen","family":"Qiu","sequence":"first","affiliation":[]},{"given":"Xiangyang","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Hongyu","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Zhelong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Qimeng","family":"Li","sequence":"additional","affiliation":[]},{"given":"Raffaele","family":"Gravina","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,11,16]]},"reference":[{"key":"9_CR1","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1016\/j.inffus.2016.09.005","volume":"35","author":"R Gravina","year":"2016","unstructured":"Gravina, R., Alinia, P., Ghasemzadeh, H., Fortino, G.: Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf. Fusion 35, 68\u201380 (2016)","journal-title":"Inf. Fusion"},{"key":"9_CR2","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1016\/j.inffus.2014.03.005","volume":"22","author":"G Fortino","year":"2015","unstructured":"Fortino, G., Galzarano, S., Gravina, R., Li, W.: A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Inf. Fusion 22, 50\u201370 (2015)","journal-title":"Inf. Fusion"},{"issue":"3","key":"9_CR3","doi-asserted-by":"publisher","first-page":"461","DOI":"10.2522\/ptj.20140253","volume":"95","author":"FB Horak","year":"2015","unstructured":"Horak, F.B., King, L., Mancini, M.: Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys. Ther. 95(3), 461\u201370 (2015)","journal-title":"Phys. Ther."},{"key":"9_CR4","doi-asserted-by":"publisher","first-page":"158","DOI":"10.1016\/j.future.2016.09.006","volume":"75","author":"R Gravina","year":"2017","unstructured":"Gravina, R., et al.: Cloud-based activity-aaservice cyber-physical framework for human activity monitoring in mobility. Future Gener. Comput. Syst. 75, 158\u2013171 (2017)","journal-title":"Future Gener. Comput. Syst."},{"key":"9_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/JSEN.2019.2926011","volume":"19","author":"S Qiu","year":"2019","unstructured":"Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y., Li, J.: Body sensor network based robust gait analysis: toward clinical and at home use. IEEE Sens. J. 19, 1\u20139 (2019)","journal-title":"IEEE Sens. J."},{"issue":"3","key":"9_CR6","first-page":"1","volume":"18","author":"M Al-Amri","year":"2018","unstructured":"Al-Amri, M., Nicholas, K., Button, K., Sparkes, V., Sheeran, L., Davies, J.L.: Inertial measurement units for clinical movement analysis: reliability and concurrent validity. Sens. (Switz.) 18(3), 1\u201329 (2018)","journal-title":"Sens. (Switz.)"},{"issue":"5","key":"9_CR7","doi-asserted-by":"publisher","first-page":"956","DOI":"10.1109\/TFUZZ.2018.2870590","volume":"27","author":"P Kumar","year":"2019","unstructured":"Kumar, P., Mukherjee, S., Saini, R., Kaushik, P., Roy, P.P., Dogra, D.P.: Multimodal gait recognition with inertial sensor data and video using evolutionary algorithm. IEEE Trans. Fuzzy Syst. 27(5), 956\u2013965 (2019)","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"9_CR8","doi-asserted-by":"publisher","first-page":"31249","DOI":"10.1109\/ACCESS.2018.2816816","volume":"6","author":"S Qiu","year":"2018","unstructured":"Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249\u201331258 (2018)","journal-title":"IEEE Access"},{"key":"9_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12984-016-0214-x","volume":"14","author":"Q Wang","year":"2017","unstructured":"Wang, Q., Markopoulos, P., Yu, B., Chen, W., Timmermans, A.: Interactive wearable systems for upper body rehabilitation: a systematic review. J. NeuroEngineering Rehabil. 14, 1\u201321 (2017)","journal-title":"J. NeuroEngineering Rehabil."},{"issue":"10","key":"9_CR10","doi-asserted-by":"publisher","first-page":"4253","DOI":"10.1109\/JSEN.2018.2817228","volume":"18","author":"A Baghdadi","year":"2018","unstructured":"Baghdadi, A., Cavuoto, L.A., Crassidis, J.L.: Hip and trunk kinematics estimation in gait through Kalman Filter using IMU data at the Ankle. IEEE Sens. J. 18(10), 4253\u20134260 (2018)","journal-title":"IEEE Sens. J."},{"issue":"6","key":"9_CR11","doi-asserted-by":"publisher","first-page":"2362","DOI":"10.1109\/JSEN.2018.2797363","volume":"18","author":"AG Leal-Junior","year":"2018","unstructured":"Leal-Junior, A.G., Frizera, A., Avellar, L.M., Marques, C., Pontes, M.J.: Polymer optical fiber for in-shoe monitoring of ground reaction forces during the gait. IEEE Sens. J. 18(6), 2362\u20132368 (2018)","journal-title":"IEEE Sens. J."},{"issue":"6","key":"9_CR12","doi-asserted-by":"publisher","first-page":"683","DOI":"10.1007\/s11036-010-0274-2","volume":"16","author":"R Lu","year":"2011","unstructured":"Lu, R., Lin, X., Liang, X., Shen, X.: A secure handshake scheme with symptoms-matching for mHealthcare social network. Mob. Netw. Appl. 16(6), 683\u2013694 (2011)","journal-title":"Mob. Netw. Appl."},{"issue":"9","key":"9_CR13","doi-asserted-by":"publisher","first-page":"442","DOI":"10.3390\/mi9090442","volume":"9","author":"S Qiu","year":"2018","unstructured":"Qiu, S., Liu, L., Zhao, H., Wang, Z., Jiang, Y.: MEMS inertial sensors based gait analysis for rehabilitation assessment via multi-sensor fusion. Micromachines 9(9), 442 (2018)","journal-title":"Micromachines"},{"issue":"2","key":"9_CR14","doi-asserted-by":"publisher","first-page":"194","DOI":"10.1109\/THMS.2019.2892318","volume":"49","author":"Z Wang","year":"2019","unstructured":"Wang, Z., et al.: Using wearable sensors to capture posture of the human lumbar spine in competitive swimming. IEEE Trans. Hum.-Mach. Syst. 49(2), 194\u2013205 (2019)","journal-title":"IEEE Trans. Hum.-Mach. Syst."},{"issue":"6","key":"9_CR15","doi-asserted-by":"publisher","first-page":"2320","DOI":"10.1109\/JSEN.2018.2885207","volume":"19","author":"S Majumder","year":"2019","unstructured":"Majumder, S., Mondal, T., Deen, M.J.: A simple, low-cost and efficient gait analyzer for wearable healthcare applications. IEEE Sens. J. 19(6), 2320\u20132329 (2019)","journal-title":"IEEE Sens. J."},{"issue":"11","key":"9_CR16","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1049\/el:20060124","volume":"42","author":"J Favre","year":"2006","unstructured":"Favre, J., Jolles, B., Siegrist, O., Aminian, K.: Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement. Electron. Lett. 42(11), 3\u20134 (2006)","journal-title":"Electron. Lett."},{"issue":"19","key":"9_CR17","doi-asserted-by":"publisher","first-page":"8514","DOI":"10.1109\/JSEN.2018.2866802","volume":"19","author":"Hongyu Zhao","year":"2019","unstructured":"Zhao, H., Wang, Z., Qiu, S., Shen, Y., Zhang, L., Tang, K.: Heading drift reduction for foot-mounted inertial navigation system via multi-sensor fusion and dual-gait analysis. IEEE Sens. J. 19(19), 8514\u20138521 (2019)","journal-title":"IEEE Sensors Journal"},{"issue":"24","key":"9_CR18","doi-asserted-by":"publisher","first-page":"9029","DOI":"10.1109\/JSEN.2016.2616163","volume":"16","author":"D Gouwanda","year":"2016","unstructured":"Gouwanda, D., Gopalai, A.A., Khoo, B.H.: A low cost alternative to monitor human gait temporal parameters-wearable wireless gyroscope. IEEE Sens. J. 16(24), 9029\u20139035 (2016)","journal-title":"IEEE Sens. J."},{"key":"9_CR19","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1016\/j.gaitpost.2019.01.008","volume":"68","author":"M Ahmed","year":"2019","unstructured":"Ahmed, M., Naude, J., Birkholtz, F., Glatt, V., Tetsworth, K.: Gait & Posture the relationship between gait and functional outcomes in patients treated with circular external fi xation for malunited tibial fractures. Gait Posture 68, 569\u2013574 (2019)","journal-title":"Gait Posture"},{"key":"9_CR20","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1016\/j.inffus.2017.04.006","volume":"39","author":"S Qiu","year":"2018","unstructured":"Qiu, S., Wang, Z., Zhao, H., Qin, K., Li, Z., Hu, H.: Inertial\/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Inf. Fusion 39, 108\u2013119 (2018)","journal-title":"Inf. Fusion"},{"key":"9_CR21","doi-asserted-by":"publisher","first-page":"28755","DOI":"10.1109\/ACCESS.2018.2833290","volume":"6","author":"H Huang","year":"2018","unstructured":"Huang, H., et al.: Attitude estimation fusing quasi-newton and cubature Kalman filtering for inertial navigation system aided with magnetic sensors. IEEE Access 6, 28755\u201328767 (2018)","journal-title":"IEEE Access"},{"issue":"6","key":"9_CR22","doi-asserted-by":"publisher","first-page":"1486","DOI":"10.1109\/TIM.2018.2795278","volume":"67","author":"MV Gheorghe","year":"2018","unstructured":"Gheorghe, M.V., Member, S., Bodea, M.C., Member, L.S.: Calibration optimization study for tilt-compensated compasses. IEEE Trans. Instrum. Meas. 67(6), 1486\u20131494 (2018)","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"9_CR23","doi-asserted-by":"publisher","first-page":"490","DOI":"10.1016\/j.measurement.2018.07.078","volume":"131","author":"N Choe","year":"2018","unstructured":"Choe, N., Zhao, H., Qiu, S., So, Y.: A sensor-to-segment calibration method for motion capture system based on low cost MIMU. Measurement 131, 490\u2013500 (2018)","journal-title":"Measurement"},{"key":"9_CR24","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1016\/j.inffus.2019.03.002","volume":"52","author":"H Zhao","year":"2019","unstructured":"Zhao, H., Wang, Z., Qiu, S.: Adaptive gait detection based on foot-mounted inertial sensors and multi-sensor fusion. Inf. Fusion 52, 157\u2013166 (2019)","journal-title":"Inf. Fusion"},{"issue":"4","key":"9_CR25","doi-asserted-by":"publisher","first-page":"939","DOI":"10.1109\/TIM.2015.2504078","volume":"65","author":"S Qiu","year":"2016","unstructured":"Qiu, S., Wang, Z., Zhao, H., Hu, H.: Using distributed wearable sensors to measure and evaluate human lower limb motions. IEEE Trans. Instrum. Meas. 65(4), 939\u2013950 (2016)","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"11","key":"9_CR26","doi-asserted-by":"publisher","first-page":"2692","DOI":"10.1109\/TIM.2018.2826198","volume":"67","author":"Z Wang","year":"2018","unstructured":"Wang, Z., et al.: Inertial sensor-based analysis of equestrian sports between beginner and professional riders under. IEEE Trans. Instrum. Meas. 67(11), 2692\u20132704 (2018)","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"6","key":"9_CR27","doi-asserted-by":"publisher","first-page":"1341","DOI":"10.1109\/TNSRE.2019.2914187","volume":"27","author":"WW An","year":"2019","unstructured":"An, W.W., et al.: Neurophysiological correlates of gait retraining with real-time visual and auditory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 27(6), 1341\u20131349 (2019)","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."}],"container-title":["Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering","Body Area Networks: Smart IoT and Big Data for Intelligent Health Management"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-34833-5_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,11,15]],"date-time":"2019-11-15T13:04:53Z","timestamp":1573823093000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-34833-5_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030348328","9783030348335"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-34833-5_9","relation":{},"ISSN":["1867-8211","1867-822X"],"issn-type":[{"type":"print","value":"1867-8211"},{"type":"electronic","value":"1867-822X"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"16 November 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BODYNETS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"EAI International Conference on Body Area Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Florence","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 October 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 October 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bodynets2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/bodynets.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"ConfyPlus","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}