iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-32248-9_71
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T04:38:33Z","timestamp":1728535113045},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030322472"},{"type":"electronic","value":"9783030322489"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-32248-9_71","type":"book-chapter","created":{"date-parts":[[2019,10,9]],"date-time":"2019-10-09T23:08:49Z","timestamp":1570662529000},"page":"636-644","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Fast and Scalable Optimal Transport for Brain Tractograms"],"prefix":"10.1007","author":[{"given":"Jean","family":"Feydy","sequence":"first","affiliation":[]},{"given":"Pierre","family":"Roussillon","sequence":"additional","affiliation":[]},{"given":"Alain","family":"Trouv\u00e9","sequence":"additional","affiliation":[]},{"given":"Pietro","family":"Gori","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,10,10]]},"reference":[{"key":"71_CR1","unstructured":"Charlier, B., Feydy, J., Glaun\u00e8s, J.: Kernel Operations on the GPU, with autodiff, without memory overflows. https:\/\/www.kernel-operations.io\/"},{"issue":"1","key":"71_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10208-016-9331-y","volume":"18","author":"L Chizat","year":"2018","unstructured":"Chizat, L., Peyr\u00e9, G., Schmitzer, B., Vialard, F.X.: An interpolating distance between optimal transport and Fisher-Rao metrics. Found. Comput. Math. 18(1), 1\u201344 (2018)","journal-title":"Found. Comput. Math."},{"issue":"2\u20133","key":"71_CR3","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1016\/S1077-3142(03)00009-2","volume":"89","author":"H Chui","year":"2003","unstructured":"Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2\u20133), 114\u2013141 (2003)","journal-title":"Comput. Vis. Image Underst."},{"key":"71_CR4","unstructured":"Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In: NIPS, pp. 2292\u20132300 (2013)"},{"key":"71_CR5","doi-asserted-by":"crossref","unstructured":"Delmonte, A., Mercier, C., Pallud, J., Bloch, I., Gori, P.: White matter multi-resolution segmentation using fuzzy set theory. In: IEEE ISBI, Venice, Italy (2019)","DOI":"10.1109\/ISBI.2019.8759506"},{"key":"71_CR6","unstructured":"Feydy, J., S\u00e9journ\u00e9, T., Vialard, F.X., Amari, S.I., Trouv\u00e9, A., Peyr\u00e9, G.: Interpolating between optimal transport and MMD using Sinkhorn divergences. In: AiStats (2019)"},{"key":"71_CR7","doi-asserted-by":"crossref","unstructured":"Feydy, J., Trouv\u00e9, A.: Global divergences between measures: from Hausdorff distance to Optimal Transport. In: ShapeMI, MICCAI workshop, pp. 102\u2013115 (2018)","DOI":"10.1007\/978-3-030-04747-4_10"},{"key":"71_CR8","doi-asserted-by":"publisher","first-page":"283","DOI":"10.1016\/j.neuroimage.2017.07.015","volume":"170","author":"E Garyfallidis","year":"2018","unstructured":"Garyfallidis, E., C\u00f4t\u00e9, M.A., Rheault, F., Sidhu, J., Hau, J., et al.: Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage 170, 283\u2013295 (2018)","journal-title":"NeuroImage"},{"key":"71_CR9","doi-asserted-by":"crossref","unstructured":"Gerber, S., Niethammer, M., Styner, M., Aylward, S.: Exploratory population analysis with unbalanced optimal transport. In: MICCAI, pp. 464\u2013472 (2018)","DOI":"10.1007\/978-3-030-00931-1_53"},{"issue":"3","key":"71_CR10","doi-asserted-by":"publisher","first-page":"477","DOI":"10.1016\/0893-6080(94)90081-7","volume":"7","author":"J Kosowsky","year":"1994","unstructured":"Kosowsky, J., Yuille, A.L.: The invisible hand algorithm: solving the assignment problem with statistical physics. Neural networks 7(3), 477\u2013490 (1994)","journal-title":"Neural networks"},{"issue":"5\u20136","key":"71_CR11","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1561\/2200000073","volume":"11","author":"G Peyr\u00e9","year":"2019","unstructured":"Peyr\u00e9, G., Cuturi, M., et al.: Computational optimal transport. Found. Trends Mach. Learn. 11(5\u20136), 355\u2013607 (2019)","journal-title":"Found. Trends Mach. Learn."},{"issue":"2","key":"71_CR12","doi-asserted-by":"publisher","first-page":"47","DOI":"10.3390\/e19020047","volume":"19","author":"A Ramdas","year":"2017","unstructured":"Ramdas, A., Trillos, N., Cuturi, M.: On wasserstein two-sample testing and related families of nonparametric tests. Entropy 19(2), 47 (2017)","journal-title":"Entropy"},{"key":"71_CR13","unstructured":"Schmitzer, B.: Stabilized sparse scaling algorithms for entropy regularized transport problems. arXiv preprint arXiv:1610.06519 (2016)"},{"key":"71_CR14","unstructured":"S\u00e9journ\u00e9, T., Feydy, J., Vialard, F.X., Trouv\u00e9, A., Peyr\u00e9, G.: Sinkorn divergences for unbalanced optimal transport. To appear"},{"key":"71_CR15","doi-asserted-by":"publisher","first-page":"754","DOI":"10.3389\/fnins.2017.00754","volume":"11","author":"N Sharmin","year":"2018","unstructured":"Sharmin, N., Olivetti, E., Avesani, P.: White matter tract segmentationas multiple linear assignment problems. Front. Neurosci. 11, 754 (2018)","journal-title":"Front. Neurosci."},{"issue":"1","key":"71_CR16","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1016\/j.neuroimage.2010.01.004","volume":"51","author":"D Wassermann","year":"2010","unstructured":"Wassermann, D., Bloy, L., Kanterakis, E., Verma, R., Deriche, R.: Unsupervised white matter fiber clustering and tract probability map generation. NeuroImage 51(1), 228\u2013241 (2010)","journal-title":"NeuroImage"},{"key":"71_CR17","doi-asserted-by":"publisher","first-page":"239","DOI":"10.1016\/j.neuroimage.2018.07.070","volume":"183","author":"J Wasserthal","year":"2018","unstructured":"Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg - fast and accurate white matter tract segmentation. NeuroImage 183, 239\u2013253 (2018)","journal-title":"NeuroImage"},{"key":"71_CR18","doi-asserted-by":"publisher","first-page":"429","DOI":"10.1016\/j.neuroimage.2018.06.027","volume":"179","author":"F Zhang","year":"2018","unstructured":"Zhang, F., et al.: An anatomically curated fiber clustering white matter atlas forconsistent white matter tract parcellation across the lifespan. NeuroImage 179, 429\u2013447 (2018)","journal-title":"NeuroImage"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-32248-9_71","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T00:25:17Z","timestamp":1728519917000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-32248-9_71"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030322472","9783030322489"],"references-count":18,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-030-32248-9_71","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"10 October 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 October 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.miccai2019.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1730","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"539","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.07","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6.31","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}