iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-30508-6_9
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:37:55Z","timestamp":1726043875278},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030305079"},{"type":"electronic","value":"9783030305086"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-30508-6_9","type":"book-chapter","created":{"date-parts":[[2019,9,8]],"date-time":"2019-09-08T23:02:47Z","timestamp":1567983767000},"page":"105-118","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Dense Receptive Field Network: A Backbone Network for Object Detection"],"prefix":"10.1007","author":[{"given":"Fei","family":"Gao","sequence":"first","affiliation":[]},{"given":"Chengguang","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yisu","family":"Ge","sequence":"additional","affiliation":[]},{"given":"Shufang","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Qike","family":"Shao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,9,9]]},"reference":[{"key":"9_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-319-46448-0_2","volume-title":"Computer Vision \u2013 ECCV 2016","author":"W Liu","year":"2016","unstructured":"Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21\u201337. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2"},{"key":"9_CR2","doi-asserted-by":"publisher","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936\u2013944. IEEE (2017). https:\/\/doi.org\/10.1109\/cvpr.2017.106","DOI":"10.1109\/cvpr.2017.106"},{"key":"9_CR3","doi-asserted-by":"publisher","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999\u20133007. IEEE (2017). https:\/\/doi.org\/10.1109\/iccv.2017.324","DOI":"10.1109\/iccv.2017.324"},{"key":"9_CR4","doi-asserted-by":"publisher","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980\u20132988. IEEE (2017). https:\/\/doi.org\/10.1109\/iccv.2017.322","DOI":"10.1109\/iccv.2017.322"},{"key":"9_CR5","unstructured":"Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)"},{"key":"9_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1007\/978-3-030-01240-3_21","volume-title":"Computer Vision \u2013 ECCV 2018","author":"Z Li","year":"2018","unstructured":"Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: DetNet: design backbone for object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 339\u2013354. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01240-3_21"},{"key":"9_CR7","doi-asserted-by":"crossref","unstructured":"Zhu, R., et al.: ScratchDet: exploring to train single-shot object detectors from scratch. arXiv preprint arXiv:1810.08425 (2018)","DOI":"10.1109\/CVPR.2019.00237"},{"issue":"6","key":"9_CR8","doi-asserted-by":"publisher","first-page":"1137","DOI":"10.1109\/tpami.2016.2577031","volume":"39","author":"S Ren","year":"2016","unstructured":"Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137\u20131149 (2016). https:\/\/doi.org\/10.1109\/tpami.2016.2577031","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"9_CR9","unstructured":"Dai, J., et al.: R-FCN: object detection via region-based fully convolutional networks. arXiv preprint arXiv:1605.06409 (2016)"},{"key":"9_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"404","DOI":"10.1007\/978-3-030-01252-6_24","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S Liu","year":"2018","unstructured":"Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 404\u2013419. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01252-6_24"},{"key":"9_CR11","doi-asserted-by":"publisher","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248\u2013255. IEEE (2009) https:\/\/doi.org\/10.1109\/cvprw.2009.5206848","DOI":"10.1109\/cvprw.2009.5206848"},{"key":"9_CR12","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)"},{"issue":"2","key":"9_CR13","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","volume":"88","author":"M Everingham","year":"2010","unstructured":"Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303\u2013338 (2010). https:\/\/doi.org\/10.1007\/s11263-009-0275-4","journal-title":"Int. J. Comput. Vision"},{"key":"9_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"key":"9_CR15","doi-asserted-by":"publisher","unstructured":"Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517\u20136525. IEEE (2017). https:\/\/doi.org\/10.1109\/cvpr.2017.690","DOI":"10.1109\/cvpr.2017.690"},{"key":"9_CR16","unstructured":"Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)"},{"key":"9_CR17","doi-asserted-by":"publisher","unstructured":"Zhou, P., Ni, B., Geng, C., Hu, J., Xu, Y.: Scale-transferrable object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 528\u2013537 (2018). https:\/\/doi.org\/10.1109\/cvpr.2018.00062","DOI":"10.1109\/cvpr.2018.00062"},{"key":"9_CR18","doi-asserted-by":"publisher","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016). https:\/\/doi.org\/10.1109\/cvpr.2016.90","DOI":"10.1109\/cvpr.2016.90"},{"key":"9_CR19","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261 (2016)","DOI":"10.1609\/aaai.v31i1.11231"},{"key":"9_CR20","unstructured":"Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)"},{"key":"9_CR21","unstructured":"Luo, W., et al.: Understanding the effective receptive field in deep convolutional neural networks. arXiv preprint arXiv:1701.04128 (2017)"},{"key":"9_CR22","doi-asserted-by":"publisher","unstructured":"Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261\u20132269. IEEE (2017). https:\/\/doi.org\/10.1109\/cvpr.2017.243","DOI":"10.1109\/cvpr.2017.243"},{"key":"9_CR23","unstructured":"Xie, J., He, T., Zhang, Z., Zhang, H., Zhang, Z., Li, M.: Bag of tricks for image classification with convolutional neural networks. arXiv preprint arXiv:1812.01187 (2018)"},{"key":"9_CR24","doi-asserted-by":"publisher","unstructured":"Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: Denseaspp for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3684\u20133692 (2018). https:\/\/doi.org\/10.1109\/cvpr.2018.00388","DOI":"10.1109\/cvpr.2018.00388"},{"key":"9_CR25","doi-asserted-by":"publisher","unstructured":"Zhang, Z., Qiao, S., Xie, C., Shen, W., Wang, B., Yuille, A.L.: Single-shot object detection with enriched semantics. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition. IEEE, June 2018. https:\/\/doi.org\/10.1109\/cvpr.2018.00609","DOI":"10.1109\/cvpr.2018.00609"},{"key":"9_CR26","doi-asserted-by":"publisher","unstructured":"Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203\u20134212 (2018). https:\/\/doi.org\/10.1109\/cvpr.2018.00442","DOI":"10.1109\/cvpr.2018.00442"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2019: Image Processing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-30508-6_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T21:35:26Z","timestamp":1664314526000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-30508-6_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030305079","9783030305086"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-30508-6_9","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"9 September 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Munich","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}