iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-29551-6_70
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:10:23Z","timestamp":1726042223100},"publisher-location":"Cham","reference-count":16,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030295509"},{"type":"electronic","value":"9783030295516"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-29551-6_70","type":"book-chapter","created":{"date-parts":[[2019,8,20]],"date-time":"2019-08-20T16:04:02Z","timestamp":1566317042000},"page":"796-804","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Data and Knowledge: An Interdisciplinary Approach for Air Quality Forecast"],"prefix":"10.1007","author":[{"given":"Cheng","family":"Feng","sequence":"first","affiliation":[]},{"given":"Wendong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Ye","family":"Tian","sequence":"additional","affiliation":[]},{"given":"Xiangyang","family":"Gong","sequence":"additional","affiliation":[]},{"given":"Xirong","family":"Que","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,21]]},"reference":[{"issue":"4","key":"70_CR1","doi-asserted-by":"publisher","first-page":"1666","DOI":"10.1109\/TII.2017.2783439","volume":"14","author":"B Zhang","year":"2018","unstructured":"Zhang, B., et al.: Learning-based energy-efficient data collection by unmannedvehicles in smart cities. IEEE Trans. Industr. Inf. 14(4), 1666\u20131676 (2018)","journal-title":"IEEE Trans. Industr. Inf."},{"key":"70_CR2","doi-asserted-by":"crossref","unstructured":"Feng, C., et al.: Estimate air quality based on mobile crowd sensing and big data. IEEE WoWMoM (2017)","DOI":"10.1109\/WoWMoM.2017.7974308"},{"issue":"6","key":"70_CR3","doi-asserted-by":"publisher","first-page":"1098","DOI":"10.1016\/j.atmosenv.2007.10.073","volume":"42","author":"E Stadlober","year":"2008","unstructured":"Stadlober, E., et al.: Quality and performance of a PM10 daily forecasting model. Atmos. Environ. 42(6), 1098\u20131109 (2008)","journal-title":"Atmos. Environ."},{"key":"70_CR4","unstructured":"Gao, H., et al.: A survey of incentive mechanisms for participatory sensing. IEEE Commun. Surv. Tutorials (2017)"},{"key":"70_CR5","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1016\/j.atmosenv.2015.02.021","volume":"108","author":"I Djalalova","year":"2015","unstructured":"Djalalova, I., et al.: PM2.5 analog forecast and Kalman filter post-processing for the community multiscale air quality (CMAQ) model. Atmos. Environ. 108, 76\u201387 (2015)","journal-title":"Atmos. Environ."},{"key":"70_CR6","doi-asserted-by":"crossref","unstructured":"Chen, J., et al.: Smog disaster forecasting using social web data and physical sensor data. In: IEEE Big Data (2015)","DOI":"10.1109\/BigData.2015.7363850"},{"issue":"4","key":"70_CR7","doi-asserted-by":"publisher","first-page":"809","DOI":"10.1109\/TNNLS.2015.2424995","volume":"27","author":"J Tang","year":"2016","unstructured":"Tang, J., et al.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Networks Learn. Syst. 27(4), 809\u2013821 (2016)","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"issue":"5","key":"70_CR8","doi-asserted-by":"publisher","first-page":"669","DOI":"10.5194\/npg-20-669-2013","volume":"20","author":"M. Buehner","year":"2013","unstructured":"Buehner, M.J., et al.: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Process. Geophys. 20(5), 669\u2013682 (2013)","journal-title":"Nonlinear Processes in Geophysics"},{"issue":"16","key":"70_CR9","doi-asserted-by":"publisher","first-page":"2845","DOI":"10.1016\/j.atmosenv.2006.01.010","volume":"40","author":"P Perez","year":"2006","unstructured":"Perez, P., et al.: An integrated neural network model for PM10 forecasting. Atmos. Environ. 40(16), 2845\u20132851 (2006)","journal-title":"Atmos. Environ."},{"key":"70_CR10","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.atmosenv.2013.11.020","volume":"82","author":"SH Kota","year":"2014","unstructured":"Kota, S.H., et al.: Evaluation of on-road vehicle CO and NO$$_{x}$$ National Emission Inventories using an urban-scale source-oriented air quality model. Atmos. Environ. 82, 99\u2013108 (2014)","journal-title":"Atmos. Environ."},{"key":"70_CR11","doi-asserted-by":"crossref","unstructured":"Chen, T., et al.: Xgboost: a scalable tree boosting system. In: ACM SIGKDD International Conference (2016)","DOI":"10.1145\/2939672.2939785"},{"issue":"3","key":"70_CR12","doi-asserted-by":"publisher","first-page":"528","DOI":"10.5094\/APR.2014.062","volume":"5","author":"X Feng","year":"2014","unstructured":"Feng, X., et al.: Formation and dominant factors of haze pollution over Beijing and its peripheral areas in winter. Atmos. Pollut. Res. 5(3), 528\u2013538 (2014)","journal-title":"Atmos. Pollut. Res."},{"key":"70_CR13","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1016\/j.envres.2016.01.030","volume":"147","author":"X Morelli","year":"2016","unstructured":"Morelli, X., et al.: Air pollution, health and social deprivation: a fine-scalerisk assessment. Environ. Res. 147, 59\u201370 (2016)","journal-title":"Environ. Res."},{"key":"70_CR14","doi-asserted-by":"crossref","unstructured":"Zheng, Y., et al.: U-air: When urban air quality inference meets big data. In: ACM SIGKDD International Conference (2013)","DOI":"10.1145\/2487575.2488188"},{"key":"70_CR15","doi-asserted-by":"crossref","unstructured":"Zheng, Y., et al.: Forecasting fine-grained air quality based on big data. In: ACM SIGKDD International Conference (2015)","DOI":"10.1145\/2783258.2788573"},{"issue":"12","key":"70_CR16","doi-asserted-by":"publisher","first-page":"2285","DOI":"10.1109\/TKDE.2018.2823740","volume":"30","author":"Z Qi","year":"2018","unstructured":"Qi, Z., et al.: Deep air learning: Interpolation, prediction, and feature analysis of air quality. IEEE Trans. Knowl. Data Eng. 30(12), 2285\u20132297 (2018)","journal-title":"IEEE Trans. Knowl. Data Eng."}],"container-title":["Lecture Notes in Computer Science","Knowledge Science, Engineering and Management"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-29551-6_70","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,2,22]],"date-time":"2020-02-22T14:10:40Z","timestamp":1582380640000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-29551-6_70"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030295509","9783030295516"],"references-count":16,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-030-29551-6_70","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"21 August 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KSEM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Knowledge Science, Engineering and Management","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Athens","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 August 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ksem2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ksem.conferences.academy\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"240","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"77","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}