iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-11018-5_25
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T22:21:56Z","timestamp":1726006916972},"publisher-location":"Cham","reference-count":36,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030110178"},{"type":"electronic","value":"9783030110185"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-11018-5_25","type":"book-chapter","created":{"date-parts":[[2019,1,24]],"date-time":"2019-01-24T05:50:50Z","timestamp":1548309050000},"page":"271-286","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Training Compact Deep Learning Models for Video Classification Using Circulant Matrices"],"prefix":"10.1007","author":[{"given":"Alexandre","family":"Araujo","sequence":"first","affiliation":[]},{"given":"Benjamin","family":"Negrevergne","sequence":"additional","affiliation":[]},{"given":"Yann","family":"Chevaleyre","sequence":"additional","affiliation":[]},{"given":"Jamal","family":"Atif","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,1,23]]},"reference":[{"key":"25_CR1","unstructured":"Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https:\/\/www.tensorflow.org\/. Software available from tensorflow.org"},{"key":"25_CR2","unstructured":"Abu-El-Haija, S., et al.: YouTube-8M: a large-scale video classification benchmark. arXiv:1609.08675 (2016). https:\/\/arxiv.org\/pdf\/1609.08675v1.pdf"},{"key":"25_CR3","doi-asserted-by":"crossref","unstructured":"Arandjelovi\u0107, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)","DOI":"10.1109\/CVPR.2016.572"},{"key":"25_CR4","doi-asserted-by":"crossref","unstructured":"Bucilu\u01ce, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 535\u2013541. ACM (2006)","DOI":"10.1145\/1150402.1150464"},{"key":"25_CR5","unstructured":"Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural networks with the hashing trick. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 2285\u20132294. JMLR.org (2015). http:\/\/dl.acm.org\/citation.cfm?id=3045118.3045361"},{"key":"25_CR6","doi-asserted-by":"crossref","unstructured":"Cheng, Y., Yu, F.X., Feris, R.S., Kumar, S., Choudhary, A., Chang, S.F.: An exploration of parameter redundancy in deep networks with circulant projections. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2857\u20132865, December 2015","DOI":"10.1109\/ICCV.2015.327"},{"key":"25_CR7","unstructured":"Collins, M.D., Kohli, P.: Memory bounded deep convolutional networks. CoRR abs\/1412.1442 (2014)"},{"key":"25_CR8","unstructured":"Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: training deep neural networks with binary weights during propagations. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, NIPS 2015, vol. 2, pp. 3123\u20133131. MIT Press, Cambridge (2015). http:\/\/dl.acm.org\/citation.cfm?id=2969442.2969588"},{"key":"25_CR9","unstructured":"Dai, B., Zhu, C., Guo, B., Wipf, D.: Compressing neural networks using the variational information bottleneck. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 80, pp. 1143\u20131152. PMLR, Stockholmsm\u00e4ssan, Stockholm, Sweden, 10\u201315 July 2018. http:\/\/proceedings.mlr.press\/v80\/dai18d.html"},{"key":"25_CR10","unstructured":"Denil, M., Shakibi, B., Dinh, L., Ranzato, M.A., de Freitas, N.: Predicting parameters in deep learning. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 2148\u20132156. Curran Associates, Inc. (2013). http:\/\/papers.nips.cc\/paper\/5025-predicting-parameters-in-deep-learning.pdf"},{"key":"25_CR11","unstructured":"Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited numerical precision. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 1737\u20131746. JMLR.org (2015). http:\/\/dl.acm.org\/citation.cfm?id=3045118.3045303"},{"key":"25_CR12","unstructured":"Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: International Conference on Learning Representations (ICLR) (2016)"},{"key":"25_CR13","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015). http:\/\/arxiv.org\/abs\/1503.02531"},{"issue":"5","key":"25_CR14","doi-asserted-by":"publisher","first-page":"1018","DOI":"10.1007\/s00041-015-9395-0","volume":"21","author":"M Huhtanen","year":"2015","unstructured":"Huhtanen, M., Per\u00e4m\u00e4ki, A.: Factoring matrices into the product of circulant and diagonal matrices. J. Fourier Anal. Appl. 21(5), 1018\u20131033 (2015). https:\/\/doi.org\/10.1007\/s00041-015-9395-0","journal-title":"J. Fourier Anal. Appl."},{"key":"25_CR15","doi-asserted-by":"crossref","unstructured":"Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. CoRR abs\/1405.3866 (2014)","DOI":"10.5244\/C.28.88"},{"key":"25_CR16","doi-asserted-by":"publisher","unstructured":"J\u00e9gou, H., Douze, M., Schmid, C., P\u00e9rez, P.: Aggregating local descriptors into a compact image representation. In: CVPR 2010 - 23rd IEEE Conference on Computer Vision and Pattern Recognition, pp. 3304\u20133311. IEEE Computer Society, San Francisco, June 2010. https:\/\/doi.org\/10.1109\/CVPR.2010.5540039. https:\/\/hal.inria.fr\/inria-00548637","DOI":"10.1109\/CVPR.2010.5540039"},{"issue":"2","key":"25_CR17","doi-asserted-by":"publisher","first-page":"352","DOI":"10.1109\/TPAMI.2017.2670560","volume":"40","author":"YG Jiang","year":"2018","unstructured":"Jiang, Y.G., Wu, Z., Wang, J., Xue, X., Chang, S.F.: Exploiting feature and class relationships in video categorization with regularized deep neural networks. IEEE Trans. Patt. Anal. Mach. Intell. 40(2), 352\u2013364 (2018). https:\/\/doi.org\/10.1109\/TPAMI.2017.2670560","journal-title":"IEEE Trans. Patt. Anal. Mach. Intell."},{"key":"25_CR18","doi-asserted-by":"publisher","unstructured":"Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. In: Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), vol. 2, pp. 1339\u20131344, October 1993. https:\/\/doi.org\/10.1109\/IJCNN.1993.716791","DOI":"10.1109\/IJCNN.1993.716791"},{"key":"25_CR19","doi-asserted-by":"crossref","unstructured":"Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725\u20131732 (2014)","DOI":"10.1109\/CVPR.2014.223"},{"key":"25_CR20","unstructured":"Li, F., et al.: Temporal modeling approaches for large-scale YouTube-8M video understanding. CoRR abs\/1707.04555 (2017)"},{"key":"25_CR21","unstructured":"Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 2181\u20132191. Curran Associates, Inc. (2017). http:\/\/papers.nips.cc\/paper\/6813-runtime-neural-pruning.pdf"},{"key":"25_CR22","doi-asserted-by":"publisher","unstructured":"Liu, B., Wang, M., Foroosh, H., Tappen, M., Penksy, M.: Sparse convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 806\u2013814, June 2015. https:\/\/doi.org\/10.1109\/CVPR.2015.7298681","DOI":"10.1109\/CVPR.2015.7298681"},{"key":"25_CR23","unstructured":"Mellempudi, N., Kundu, A., Mudigere, D., Das, D., Kaul, B., Dubey, P.: Ternary neural networks with fine-grained quantization. CoRR abs\/1705.01462 (2017)"},{"key":"25_CR24","unstructured":"Miech, A., Laptev, I., Sivic, J.: Learnable pooling with context gating for video classification. CoRR abs\/1706.06905 (2017)"},{"key":"25_CR25","unstructured":"Moczulski, M., Denil, M., Appleyard, J., de Freitas, N.: ACDC: a structured efficient linear layer. arXiv preprint arXiv:1511.05946 (2015)"},{"issue":"1\u20132","key":"25_CR26","doi-asserted-by":"publisher","first-page":"196","DOI":"10.1016\/S0167-2789(98)00055-4","volume":"120","author":"J M\u00fcller-Quade","year":"1998","unstructured":"M\u00fcller-Quade, J., Aagedal, H., Beth, T., Schmid, M.: Algorithmic design of diffractive optical systems for information processing. Phys. D Nonlinear Phenom. 120(1\u20132), 196\u2013205 (1998)","journal-title":"Phys. D Nonlinear Phenom."},{"key":"25_CR27","doi-asserted-by":"publisher","unstructured":"Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20138, June 2007. https:\/\/doi.org\/10.1109\/CVPR.2007.383266","DOI":"10.1109\/CVPR.2007.383266"},{"key":"25_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"525","DOI":"10.1007\/978-3-319-46493-0_32","volume-title":"Computer Vision \u2013 ECCV 2016","author":"M Rastegari","year":"2016","unstructured":"Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 525\u2013542. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46493-0_32"},{"issue":"1\u20133","key":"25_CR29","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1016\/S0024-3795(99)00250-5","volume":"306","author":"M Schmid","year":"2000","unstructured":"Schmid, M., Steinwandt, R., M\u00fcller-Quade, J., R\u00f6tteler, M., Beth, T.: Decomposing a matrix into circulant and diagonal factors. Linear Algebra Appl. 306(1\u20133), 131\u2013143 (2000)","journal-title":"Linear Algebra Appl."},{"key":"25_CR30","unstructured":"Sindhwani, V., Sainath, T., Kumar, S.: Structured transforms for small-footprint deep learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 3088\u20133096. Curran Associates, Inc. (2015). http:\/\/papers.nips.cc\/paper\/5869-structured-transforms-for-small-footprint-deep-learning.pdf"},{"key":"25_CR31","unstructured":"Skalic, M., Pekalski, M., Pan, X.E.: Deep learning methods for efficient large scale video labeling. arXiv preprint arXiv:1706.04572 (2017)"},{"issue":"4","key":"25_CR32","doi-asserted-by":"publisher","first-page":"1096","DOI":"10.1016\/j.jfa.2010.11.014","volume":"260","author":"J Vyb\u00edral","year":"2011","unstructured":"Vyb\u00edral, J.: A variant of the johnson-lindenstrauss lemma for circulant matrices. J. Funct. Anal. 260(4), 1096\u20131105 (2011). https:\/\/doi.org\/10.1016\/j.jfa.2010.11.014. http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0022123610004507","journal-title":"J. Funct. Anal."},{"key":"25_CR33","unstructured":"Wang, H., Zhang, T., Wu, J.: The monkeytyping solution to the YouTube-8M video understanding challenge. CoRR abs\/1706.05150 (2017)"},{"key":"25_CR34","doi-asserted-by":"publisher","unstructured":"Yang, Z., et al.: Deep fried convnets. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1476\u20131483, December 2015. https:\/\/doi.org\/10.1109\/ICCV.2015.173","DOI":"10.1109\/ICCV.2015.173"},{"key":"25_CR35","doi-asserted-by":"publisher","unstructured":"Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and sparse decomposition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 67\u201376, July 2017. https:\/\/doi.org\/10.1109\/CVPR.2017.15","DOI":"10.1109\/CVPR.2017.15"},{"key":"25_CR36","doi-asserted-by":"crossref","unstructured":"Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4694\u20134702 (2015)","DOI":"10.1109\/CVPR.2015.7299101"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2018 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-11018-5_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,22]],"date-time":"2023-01-22T01:20:54Z","timestamp":1674350454000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-11018-5_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030110178","9783030110185"],"references-count":36,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-11018-5_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"23 January 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Munich","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2018.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}