iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1002/SAM.11620
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,9,2]],"date-time":"2023-09-02T18:10:29Z","timestamp":1693678229005},"reference-count":28,"publisher":"Wiley","issue":"5","license":[{"start":{"date-parts":[[2023,4,14]],"date-time":"2023-04-14T00:00:00Z","timestamp":1681430400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Statistical Analysis"],"published-print":{"date-parts":[[2023,10]]},"abstract":"Abstract<\/jats:title>Determining association rules of significant interest is an essential task within data mining and statistical analysis. In this paper, we first precisely define the notion of association rule. For this, we introduce a general model, which includes the usual transaction model, and which allows many operations on the association rules. Then, we interpret association rules as statistical decision rules. This interpretation leads to four decisional measures, one of them being the usual confidence. Then, we give some strategies based on the use of these four decisional measures in order to select or to construct association rules with a given consequent. We finally present an experimental study to illustrate these strategies. This study is carried out in R language, with the R\u2010package we specifically built for association rules mining.<\/jats:p>","DOI":"10.1002\/sam.11620","type":"journal-article","created":{"date-parts":[[2023,4,14]],"date-time":"2023-04-14T08:57:38Z","timestamp":1681462658000},"page":"411-435","update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Association rules and decision rules"],"prefix":"10.1002","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5503-6225","authenticated-orcid":false,"given":"Abdelkader","family":"Mokkadem","sequence":"first","affiliation":[{"name":"Laboratoire de Math\u00e9matiques de Versailles Universit\u00e9 Paris\u2010Saclay, UVSQ, CNRS Versailles France"}]},{"given":"Mariane","family":"Pelletier","sequence":"additional","affiliation":[{"name":"Laboratoire de Math\u00e9matiques de Versailles Universit\u00e9 Paris\u2010Saclay, UVSQ, CNRS Versailles France"}]},{"given":"Louis","family":"Raimbault","sequence":"additional","affiliation":[{"name":"Laboratoire de Math\u00e9matiques de Versailles Universit\u00e9 Paris\u2010Saclay, UVSQ, CNRS Versailles France"},{"name":"Maisons du Monde France SAS Le Portereau, Vertou France"}]}],"member":"311","published-online":{"date-parts":[[2023,4,14]]},"reference":[{"key":"e_1_2_7_2_1","doi-asserted-by":"crossref","unstructured":"R.Agrawal T.Imielinski andA.Swami.Mining association rules between sets of items in large databases Proc. 1993 ACM\u2010SIGMOD Int. Conf. Manage. Data SIGMOD'93 Washington DC.1993pp.207\u2013216.","DOI":"10.1145\/170035.170072"},{"key":"e_1_2_7_3_1","doi-asserted-by":"publisher","DOI":"10.1093\/bib\/bbp042"},{"key":"e_1_2_7_4_1","doi-asserted-by":"publisher","DOI":"10.2307\/2532052"},{"key":"e_1_2_7_5_1","doi-asserted-by":"crossref","unstructured":"S.Brin R.Motwani andC.Silverstein.Beyond market baskets: generalizing association rules to correlations ACM SIGMOD\/PODS'97 Joint Conf.1997pp.265\u2013276.","DOI":"10.1145\/253262.253327"},{"key":"e_1_2_7_6_1","doi-asserted-by":"publisher","DOI":"10.1007\/s001800100074"},{"key":"e_1_2_7_7_1","first-page":"11","article-title":"Towards a text mining methodology using frequent itemsets and association rules","volume":"2004","author":"Cherfi H.","year":"2004","journal-title":"Soft Comput. J."},{"key":"e_1_2_7_8_1","doi-asserted-by":"publisher","DOI":"10.1177\/001316446002000104"},{"key":"e_1_2_7_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/1132960.1132963"},{"key":"e_1_2_7_10_1","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1972.10482401"},{"key":"e_1_2_7_11_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00180-007-0062-z"},{"key":"e_1_2_7_12_1","doi-asserted-by":"publisher","DOI":"10.1007\/s001800100075"},{"key":"e_1_2_7_13_1","first-page":"399","article-title":"Association rule mining through adaptive parameter control in particle swarm optimization","volume":"30","author":"Indira K.","year":"2001","journal-title":"Comput. Stat."},{"key":"e_1_2_7_14_1","doi-asserted-by":"publisher","DOI":"10.1093\/bib\/bbu042"},{"key":"e_1_2_7_15_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cag.2007.01.023"},{"key":"e_1_2_7_16_1","doi-asserted-by":"crossref","unstructured":"J.ManimaranandT.Velmurugan.A survey of association rule mining in text applications IEEE Int. Conf. Comput. Intell. Comput. Res. Enathi India.2013 pp.1\u20135https:\/\/doi.org\/10.1109\/ICCIC.2013.6724258.","DOI":"10.1109\/ICCIC.2013.6724258"},{"key":"e_1_2_7_17_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.2044-8317.1968.tb00401.x"},{"key":"e_1_2_7_18_1","doi-asserted-by":"publisher","DOI":"10.1007\/s42979\u2010022\u201001266\u2010y"},{"key":"e_1_2_7_19_1","doi-asserted-by":"publisher","DOI":"10.1515\/9783110813203"},{"key":"e_1_2_7_20_1","doi-asserted-by":"publisher","DOI":"10.1093\/bib\/bbt074"},{"key":"e_1_2_7_21_1","doi-asserted-by":"publisher","DOI":"10.1002\/sam.10027"},{"key":"e_1_2_7_22_1","first-page":"229","article-title":"Discovery, analysis, and presentation of strong rules","author":"Piatetsky\u2010Shapiro G.","year":"1991","journal-title":"Knowl. Discov. Databases"},{"key":"e_1_2_7_23_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11222-013-9404-6"},{"key":"e_1_2_7_24_1","doi-asserted-by":"publisher","DOI":"10.1002\/sam.11394"},{"key":"e_1_2_7_25_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0306-4379(03)00072-3"},{"key":"e_1_2_7_26_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00357-008-9024-6"},{"key":"e_1_2_7_27_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11222-007-9047-6"},{"key":"e_1_2_7_28_1","first-page":"257","article-title":"On the association of attributes in statistics","volume":"75","author":"Yule G. U.","year":"1900","journal-title":"Phil. Trans. R. Soc. A"},{"key":"e_1_2_7_29_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1003627"}],"container-title":["Statistical Analysis and Data Mining: The ASA Data Science Journal"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/sam.11620","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T11:34:59Z","timestamp":1693568099000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/sam.11620"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,14]]},"references-count":28,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2023,10]]}},"alternative-id":["10.1002\/sam.11620"],"URL":"http:\/\/dx.doi.org\/10.1002\/sam.11620","archive":["Portico"],"relation":{},"ISSN":["1932-1864","1932-1872"],"issn-type":[{"value":"1932-1864","type":"print"},{"value":"1932-1872","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,4,14]]},"assertion":[{"value":"2022-06-21","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2023-03-26","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2023-04-14","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}