iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1002/CPE.6419
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T12:30:29Z","timestamp":1725280229637},"reference-count":54,"publisher":"Wiley","issue":"21","license":[{"start":{"date-parts":[[2021,6,8]],"date-time":"2021-06-08T00:00:00Z","timestamp":1623110400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Concurrency and Computation"],"published-print":{"date-parts":[[2021,11,10]]},"abstract":"Summary<\/jats:title>The development of a cloud\u2010based Parkinson's disease identification system is identified as one of the most challenging issues for predictive telediagnosis and telemonitoring in the emerging smart healthcare applications. The traditional way of Parkinson's disease identification by clinical parameters is more costly and uncomfortable for rural people to avail the testing and diagnosis from the remote place. So, the cloud\u2010assisted Parkinson's disease identification system (CAPDIS) is proposed based on non\u2010clinical parameters with patient\u2010centric and cost\u2010effective features for helping the poor patients living in rural as well as urban areas. In addition, the proposed system diagnoses the remote patient by examining the symptoms like dysphonia which is identified as the most severe neurodegenerative disorder in the world. Further, the proposed system has experimented with the benchmark voice dataset collected from the University of California\u2010Irvine (UCI) repository. It shows that the proposed CAPDIS system with adaptive linear kernel support vector machines (k\u2010SVM) classifier has significant improvements on detection accuracy, specificity, sensitivity, and Matthews's correlation coefficient scores while comparing to the existing classifiers. Therefore, the proposed adaptive linear k\u2010SVM classifiers provide 10% improvements on prediction accuracy and F1\u2010Score over the existing polynomial, radial basis, and sigmoidal\u2010based k\u2010SVM classifiers.<\/jats:p>","DOI":"10.1002\/cpe.6419","type":"journal-article","created":{"date-parts":[[2021,6,9]],"date-time":"2021-06-09T12:01:41Z","timestamp":1623240101000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Cloud\u2010assisted Parkinson disease identification system for remote patient monitoring and diagnosis in the smart healthcare applications"],"prefix":"10.1002","volume":"33","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6137-9427","authenticated-orcid":false,"given":"Karthikeyan","family":"Harimoorthy","sequence":"first","affiliation":[{"name":"Research scholar Anna University Chennai India"}]},{"given":"Menakadevi","family":"Thangavelu","sequence":"additional","affiliation":[{"name":"Adhiyamaan College of Engineering Hosur India"}]}],"member":"311","published-online":{"date-parts":[[2021,6,8]]},"reference":[{"key":"e_1_2_10_2_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2016.01.009"},{"key":"e_1_2_10_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2014.05.056"},{"key":"e_1_2_10_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jss.2014.05.068"},{"key":"e_1_2_10_5_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10916-013-9949-0"},{"key":"e_1_2_10_6_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11277-015-2999-5"},{"key":"e_1_2_10_7_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2015.11.010"},{"key":"e_1_2_10_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2008.2005954"},{"key":"e_1_2_10_9_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2014.07.006"},{"key":"e_1_2_10_10_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cmpb.2015.12.011"},{"key":"e_1_2_10_11_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2014.09.003"},{"key":"e_1_2_10_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jss.2015.08.041"},{"key":"e_1_2_10_13_1","volume-title":"Oxford Specialist Handbooks in Neurology","author":"Edwards MJ","year":"2008"},{"key":"e_1_2_10_14_1","doi-asserted-by":"publisher","DOI":"10.1097\/WCO.0000000000000112"},{"key":"e_1_2_10_15_1","doi-asserted-by":"publisher","DOI":"10.1136\/bmj.39289.437454.AD"},{"key":"e_1_2_10_16_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11910-005-0072-6"},{"key":"e_1_2_10_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00455-008-9180-1"},{"key":"e_1_2_10_18_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00429-013-0510-1"},{"key":"e_1_2_10_19_1","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1007\/PL00022912","article-title":"Cognition and emotion in different stages and subtypes of Parkinson's disease","volume":"247","author":"Stocchi F","year":"2000","journal-title":"J Neurol"},{"key":"e_1_2_10_20_1","doi-asserted-by":"crossref","first-page":"e1","DOI":"10.1016\/j.baga.2012.10.001","article-title":"Parkinson disease, movement disorders and dementia","volume":"2","author":"Ceravolo R","year":"2012","journal-title":"Basal Ganglia"},{"key":"e_1_2_10_21_1","doi-asserted-by":"publisher","DOI":"10.5607\/en.2015.24.2.103"},{"key":"e_1_2_10_22_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.apnr.2014.12.008"},{"key":"e_1_2_10_23_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csl.2015.08.005"},{"key":"e_1_2_10_24_1","doi-asserted-by":"publisher","DOI":"10.1002\/mds.26281"},{"key":"e_1_2_10_25_1","doi-asserted-by":"publisher","DOI":"10.3758\/CABN.3.4.275"},{"key":"e_1_2_10_26_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10072-008-0971-9"},{"key":"e_1_2_10_27_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00455-014-9547-4"},{"key":"e_1_2_10_28_1","doi-asserted-by":"crossref","unstructured":"WibawaMS NugrohoHA SetiawanNA.Performance evaluation of combined feature selection and classification methods in diagnosing Parkinson disease based on voice feature. Paper presented at: International Conference on Science in Information Technology; 2015; Yogyakarta Indonesia:126\u2013131.https:\/\/doi.org\/10.1109\/ICSITech.2015.7407790","DOI":"10.1109\/ICSITech.2015.7407790"},{"key":"e_1_2_10_29_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNSRE.2013.2287241"},{"key":"e_1_2_10_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNSRE.2013.2260561"},{"key":"e_1_2_10_31_1","doi-asserted-by":"crossref","unstructured":"AfonsoLCS PereiraCR WeberSAT HookC PapaJP.Parkinson's disease identification through deep optimum\u2010path forest clustering. Paper presented at: 30th SIBGRAPI Conference on Graphics Patterns and Images; 2017; Niteroi Brazil:163\u2010169.https:\/\/doi.org\/10.1109\/SIBGRAPI.2017.28","DOI":"10.1109\/SIBGRAPI.2017.28"},{"key":"e_1_2_10_32_1","doi-asserted-by":"crossref","unstructured":"AsgariM ShafranI.Predicting severity of Parkinson's disease from speech. Paper presented at: 32nd Annual International Conference of the IEEE EMBS; 2010: Buenos Aires Argentina:5201\u20135204.https:\/\/doi.org\/10.1109\/IEMBS.2010.5626104","DOI":"10.1109\/IEMBS.2010.5626104"},{"key":"e_1_2_10_33_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2014.04.009"},{"key":"e_1_2_10_34_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2016.03.018"},{"key":"e_1_2_10_35_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.csl.2012.10.001"},{"key":"e_1_2_10_36_1","doi-asserted-by":"crossref","unstructured":"RevettK GorunescuF SalemAM.Feature selection in Parkinson's disease: a rough sets approach. Paper presented at: International Multiconference on Computer Science and Information Technology; 2009: Mragowo Poland:425\u2013428.https:\/\/doi.org\/10.1109\/IMCSIT.2009.5352688","DOI":"10.1109\/IMCSIT.2009.5352688"},{"key":"e_1_2_10_37_1","first-page":"76","volume-title":"Automatic Detection of Neurological Disordered Voices Using Mel Cepstral Coefficients and Neural Networks","author":"UmaRani K.","year":"2013"},{"key":"e_1_2_10_38_1","doi-asserted-by":"crossref","unstructured":"CaesarendraW PutriFT AriyantoM SetiawanJD.Pattern recognition methods for multi stage classification of Parkinson's disease utilizing voice features. Paper presented at: IEEE International Conference on Advanced Intelligent Mechatronics; 2015: Busan South Korea:802\u2013807.https:\/\/doi.org\/10.1109\/AIM.2015.7222636","DOI":"10.1109\/AIM.2015.7222636"},{"key":"e_1_2_10_39_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2015.02.085"},{"key":"e_1_2_10_40_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00415-015-7671-1"},{"key":"e_1_2_10_41_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10772-017-9401-9"},{"key":"e_1_2_10_42_1","doi-asserted-by":"crossref","unstructured":"UmaRaniK HoliMS.Analysis of speech characteristics of neurological diseases and their classification. Paper presented at: Third International Conference on Computing Communication & Networking Technologies; 2012:1\u20136.https:\/\/doi.org\/10.1109\/ICCCNT.2012.6395886","DOI":"10.1109\/ICCCNT.2012.6395886"},{"key":"e_1_2_10_43_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.bbe.2017.09.002"},{"key":"e_1_2_10_44_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijmedinf.2016.03.001"},{"key":"e_1_2_10_45_1","doi-asserted-by":"crossref","unstructured":"ChandrayanS AgarwalA ArifM SahuSS.Selection of dominant voice features for accurate detection of Parkinson's disease. Paper presented at: International Conference on Biosignals Images and Instrumentation; 2017: Chennai India:1\u20134.https:\/\/doi.org\/10.1109\/ICBSII.2017.8082297","DOI":"10.1109\/ICBSII.2017.8082297"},{"key":"e_1_2_10_46_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10916-011-9678-1"},{"key":"e_1_2_10_47_1","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2013.2245674"},{"key":"e_1_2_10_48_1","first-page":"1","article-title":"Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection","volume":"6","author":"Little MA","year":"2007","journal-title":"Biomed Eng"},{"key":"e_1_2_10_49_1","unstructured":"Oxford Parkinson's Disease Detection Dataset. Parkinsons Data Set. UCI Machine Learning Repository; 2008.https:\/\/archive.ics.uci.edu\/ml\/datasets\/Parkinsons. Accessed April 16 2020"},{"key":"e_1_2_10_50_1","doi-asserted-by":"publisher","DOI":"10.1007\/s13369-016-2206-3"},{"key":"e_1_2_10_51_1","first-page":"1","article-title":"Onboard disease prediction and rehabilitation monitoring on secure edge\u2010cloud integrated privacy preserving healthcare system","author":"Jayaram R","year":"2020","journal-title":"Egyptian Informat J"},{"key":"e_1_2_10_52_1","first-page":"1","article-title":"Prediction and estimation of Parkinson's disease severity based on voice signal","author":"Hemmerling D","year":"2020","journal-title":"J Voice"},{"key":"e_1_2_10_53_1","doi-asserted-by":"publisher","DOI":"10.1007\/s12652-021-03157-1"},{"key":"e_1_2_10_54_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2015.12.007"},{"key":"e_1_2_10_55_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2020.107040"}],"container-title":["Concurrency and Computation: Practice and Experience"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/cpe.6419","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1002\/cpe.6419","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1002\/cpe.6419","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,29]],"date-time":"2023-08-29T22:38:40Z","timestamp":1693348720000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1002\/cpe.6419"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,8]]},"references-count":54,"journal-issue":{"issue":"21","published-print":{"date-parts":[[2021,11,10]]}},"alternative-id":["10.1002\/cpe.6419"],"URL":"http:\/\/dx.doi.org\/10.1002\/cpe.6419","archive":["Portico"],"relation":{},"ISSN":["1532-0626","1532-0634"],"issn-type":[{"value":"1532-0626","type":"print"},{"value":"1532-0634","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6,8]]},"assertion":[{"value":"2020-10-06","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-05-08","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-06-08","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}