@inproceedings{bowen-etal-2017-effect,
title = "The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction",
author = "Bowen, Fraser and
Dehdari, Jon and
van Genabith, Josef",
editor = "Derczynski, Leon and
Xu, Wei and
Ritter, Alan and
Baldwin, Tim",
booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4410",
doi = "10.18653/v1/W17-4410",
pages = "68--76",
abstract = "In this research we investigate the impact of mismatches in the density and type of error between training and test data on a neural system correcting preposition and determiner errors. We use synthetically produced training data to control error density and type, and {``}real{''} error data for testing. Our results show it is possible to combine error types, although prepositions and determiners behave differently in terms of how much error should be artificially introduced into the training data in order to get the best results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bowen-etal-2017-effect">
<titleInfo>
<title>The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fraser</namePart>
<namePart type="family">Bowen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jon</namePart>
<namePart type="family">Dehdari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">van Genabith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Noisy User-generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this research we investigate the impact of mismatches in the density and type of error between training and test data on a neural system correcting preposition and determiner errors. We use synthetically produced training data to control error density and type, and “real” error data for testing. Our results show it is possible to combine error types, although prepositions and determiners behave differently in terms of how much error should be artificially introduced into the training data in order to get the best results.</abstract>
<identifier type="citekey">bowen-etal-2017-effect</identifier>
<identifier type="doi">10.18653/v1/W17-4410</identifier>
<location>
<url>https://aclanthology.org/W17-4410</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>68</start>
<end>76</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction
%A Bowen, Fraser
%A Dehdari, Jon
%A van Genabith, Josef
%Y Derczynski, Leon
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%S Proceedings of the 3rd Workshop on Noisy User-generated Text
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F bowen-etal-2017-effect
%X In this research we investigate the impact of mismatches in the density and type of error between training and test data on a neural system correcting preposition and determiner errors. We use synthetically produced training data to control error density and type, and “real” error data for testing. Our results show it is possible to combine error types, although prepositions and determiners behave differently in terms of how much error should be artificially introduced into the training data in order to get the best results.
%R 10.18653/v1/W17-4410
%U https://aclanthology.org/W17-4410
%U https://doi.org/10.18653/v1/W17-4410
%P 68-76
Markdown (Informal)
[The Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction](https://aclanthology.org/W17-4410) (Bowen et al., WNUT 2017)
ACL