@inproceedings{asada-miwa-2023-bionart,
title = "{B}io{NART}: A Biomedical Non-{A}uto{R}egressive Transformer for Natural Language Generation",
author = "Asada, Masaki and
Miwa, Makoto",
editor = "Demner-fushman, Dina and
Ananiadou, Sophia and
Cohen, Kevin",
booktitle = "The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.bionlp-1.34",
doi = "10.18653/v1/2023.bionlp-1.34",
pages = "369--376",
abstract = "We propose a novel Biomedical domain-specific Non-AutoRegressive Transformer model for natural language generation: BioNART. Our BioNART is based on an encoder-decoder model, and both encoder and decoder are compatible with widely used BERT architecture, which allows benefiting from publicly available pre-trained biomedical language model checkpoints. We performed additional pre-training and fine-tuned BioNART on biomedical summarization and doctor-patient dialogue tasks. Experimental results show that our BioNART achieves about 94{\%} of the ROUGE score to the pre-trained autoregressive model while realizing an 18 times faster inference speed on the iCliniq dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="asada-miwa-2023-bionart">
<titleInfo>
<title>BioNART: A Biomedical Non-AutoRegressive Transformer for Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masaki</namePart>
<namePart type="family">Asada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel Biomedical domain-specific Non-AutoRegressive Transformer model for natural language generation: BioNART. Our BioNART is based on an encoder-decoder model, and both encoder and decoder are compatible with widely used BERT architecture, which allows benefiting from publicly available pre-trained biomedical language model checkpoints. We performed additional pre-training and fine-tuned BioNART on biomedical summarization and doctor-patient dialogue tasks. Experimental results show that our BioNART achieves about 94% of the ROUGE score to the pre-trained autoregressive model while realizing an 18 times faster inference speed on the iCliniq dataset.</abstract>
<identifier type="citekey">asada-miwa-2023-bionart</identifier>
<identifier type="doi">10.18653/v1/2023.bionlp-1.34</identifier>
<location>
<url>https://aclanthology.org/2023.bionlp-1.34</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>369</start>
<end>376</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BioNART: A Biomedical Non-AutoRegressive Transformer for Natural Language Generation
%A Asada, Masaki
%A Miwa, Makoto
%Y Demner-fushman, Dina
%Y Ananiadou, Sophia
%Y Cohen, Kevin
%S The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F asada-miwa-2023-bionart
%X We propose a novel Biomedical domain-specific Non-AutoRegressive Transformer model for natural language generation: BioNART. Our BioNART is based on an encoder-decoder model, and both encoder and decoder are compatible with widely used BERT architecture, which allows benefiting from publicly available pre-trained biomedical language model checkpoints. We performed additional pre-training and fine-tuned BioNART on biomedical summarization and doctor-patient dialogue tasks. Experimental results show that our BioNART achieves about 94% of the ROUGE score to the pre-trained autoregressive model while realizing an 18 times faster inference speed on the iCliniq dataset.
%R 10.18653/v1/2023.bionlp-1.34
%U https://aclanthology.org/2023.bionlp-1.34
%U https://doi.org/10.18653/v1/2023.bionlp-1.34
%P 369-376
Markdown (Informal)
[BioNART: A Biomedical Non-AutoRegressive Transformer for Natural Language Generation](https://aclanthology.org/2023.bionlp-1.34) (Asada & Miwa, BioNLP 2023)
ACL