@inproceedings{clayton-gaizauskas-2022-predicting,
title = "Predicting the Presence of Reasoning Markers in Argumentative Text",
author = "Clayton, Jonathan and
Gaizauskas, Rob",
editor = "Lapesa, Gabriella and
Schneider, Jodi and
Jo, Yohan and
Saha, Sougata",
booktitle = "Proceedings of the 9th Workshop on Argument Mining",
month = oct,
year = "2022",
address = "Online and in Gyeongju, Republic of Korea",
publisher = "International Conference on Computational Linguistics",
url = "https://aclanthology.org/2022.argmining-1.13",
pages = "137--142",
abstract = "This paper proposes a novel task in Argument Mining, which we will refer to as Reasoning Marker Prediction. We reuse the popular Persuasive Essays Corpus (Stab and Gurevych, 2014). Instead of using this corpus for Argument Structure Parsing, we use a simple heuristic method to identify text spans which we can identify as reasoning markers. We propose baseline methods for predicting the presence of these reasoning markers automatically, and make a script to generate the data for the task publicly available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="clayton-gaizauskas-2022-predicting">
<titleInfo>
<title>Predicting the Presence of Reasoning Markers in Argumentative Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Clayton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">Gaizauskas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jodi</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohan</namePart>
<namePart type="family">Jo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sougata</namePart>
<namePart type="family">Saha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Conference on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and in Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a novel task in Argument Mining, which we will refer to as Reasoning Marker Prediction. We reuse the popular Persuasive Essays Corpus (Stab and Gurevych, 2014). Instead of using this corpus for Argument Structure Parsing, we use a simple heuristic method to identify text spans which we can identify as reasoning markers. We propose baseline methods for predicting the presence of these reasoning markers automatically, and make a script to generate the data for the task publicly available.</abstract>
<identifier type="citekey">clayton-gaizauskas-2022-predicting</identifier>
<location>
<url>https://aclanthology.org/2022.argmining-1.13</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>137</start>
<end>142</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting the Presence of Reasoning Markers in Argumentative Text
%A Clayton, Jonathan
%A Gaizauskas, Rob
%Y Lapesa, Gabriella
%Y Schneider, Jodi
%Y Jo, Yohan
%Y Saha, Sougata
%S Proceedings of the 9th Workshop on Argument Mining
%D 2022
%8 October
%I International Conference on Computational Linguistics
%C Online and in Gyeongju, Republic of Korea
%F clayton-gaizauskas-2022-predicting
%X This paper proposes a novel task in Argument Mining, which we will refer to as Reasoning Marker Prediction. We reuse the popular Persuasive Essays Corpus (Stab and Gurevych, 2014). Instead of using this corpus for Argument Structure Parsing, we use a simple heuristic method to identify text spans which we can identify as reasoning markers. We propose baseline methods for predicting the presence of these reasoning markers automatically, and make a script to generate the data for the task publicly available.
%U https://aclanthology.org/2022.argmining-1.13
%P 137-142
Markdown (Informal)
[Predicting the Presence of Reasoning Markers in Argumentative Text](https://aclanthology.org/2022.argmining-1.13) (Clayton & Gaizauskas, ArgMining 2022)
ACL