@inproceedings{murugesan-etal-2021-efficient,
title = "Efficient Text-based Reinforcement Learning by Jointly Leveraging State and Commonsense Graph Representations",
author = "Murugesan, Keerthiram and
Atzeni, Mattia and
Kapanipathi, Pavan and
Talamadupula, Kartik and
Sachan, Mrinmaya and
Campbell, Murray",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-short.91",
doi = "10.18653/v1/2021.acl-short.91",
pages = "719--725",
abstract = "Text-based games (TBGs) have emerged as useful benchmarks for evaluating progress at the intersection of grounded language understanding and reinforcement learning (RL). Recent work has proposed the use of external knowledge to improve the efficiency of RL agents for TBGs. In this paper, we posit that to act efficiently in TBGs, an agent must be able to track the state of the game while retrieving and using relevant commonsense knowledge. Thus, we propose an agent for TBGs that induces a graph representation of the game state and jointly grounds it with a graph of commonsense knowledge from ConceptNet. This combination is achieved through bidirectional knowledge graph attention between the two symbolic representations. We show that agents that incorporate commonsense into the game state graph outperform baseline agents.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="murugesan-etal-2021-efficient">
<titleInfo>
<title>Efficient Text-based Reinforcement Learning by Jointly Leveraging State and Commonsense Graph Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Keerthiram</namePart>
<namePart type="family">Murugesan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mattia</namePart>
<namePart type="family">Atzeni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavan</namePart>
<namePart type="family">Kapanipathi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kartik</namePart>
<namePart type="family">Talamadupula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mrinmaya</namePart>
<namePart type="family">Sachan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Murray</namePart>
<namePart type="family">Campbell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Text-based games (TBGs) have emerged as useful benchmarks for evaluating progress at the intersection of grounded language understanding and reinforcement learning (RL). Recent work has proposed the use of external knowledge to improve the efficiency of RL agents for TBGs. In this paper, we posit that to act efficiently in TBGs, an agent must be able to track the state of the game while retrieving and using relevant commonsense knowledge. Thus, we propose an agent for TBGs that induces a graph representation of the game state and jointly grounds it with a graph of commonsense knowledge from ConceptNet. This combination is achieved through bidirectional knowledge graph attention between the two symbolic representations. We show that agents that incorporate commonsense into the game state graph outperform baseline agents.</abstract>
<identifier type="citekey">murugesan-etal-2021-efficient</identifier>
<identifier type="doi">10.18653/v1/2021.acl-short.91</identifier>
<location>
<url>https://aclanthology.org/2021.acl-short.91</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>719</start>
<end>725</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient Text-based Reinforcement Learning by Jointly Leveraging State and Commonsense Graph Representations
%A Murugesan, Keerthiram
%A Atzeni, Mattia
%A Kapanipathi, Pavan
%A Talamadupula, Kartik
%A Sachan, Mrinmaya
%A Campbell, Murray
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F murugesan-etal-2021-efficient
%X Text-based games (TBGs) have emerged as useful benchmarks for evaluating progress at the intersection of grounded language understanding and reinforcement learning (RL). Recent work has proposed the use of external knowledge to improve the efficiency of RL agents for TBGs. In this paper, we posit that to act efficiently in TBGs, an agent must be able to track the state of the game while retrieving and using relevant commonsense knowledge. Thus, we propose an agent for TBGs that induces a graph representation of the game state and jointly grounds it with a graph of commonsense knowledge from ConceptNet. This combination is achieved through bidirectional knowledge graph attention between the two symbolic representations. We show that agents that incorporate commonsense into the game state graph outperform baseline agents.
%R 10.18653/v1/2021.acl-short.91
%U https://aclanthology.org/2021.acl-short.91
%U https://doi.org/10.18653/v1/2021.acl-short.91
%P 719-725
Markdown (Informal)
[Efficient Text-based Reinforcement Learning by Jointly Leveraging State and Commonsense Graph Representations](https://aclanthology.org/2021.acl-short.91) (Murugesan et al., ACL-IJCNLP 2021)
ACL