@inproceedings{kruengkrai-etal-2020-improving,
title = "Improving Low-Resource Named Entity Recognition using Joint Sentence and Token Labeling",
author = "Kruengkrai, Canasai and
Nguyen, Thien Hai and
Aljunied, Sharifah Mahani and
Bing, Lidong",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.523",
doi = "10.18653/v1/2020.acl-main.523",
pages = "5898--5905",
abstract = "Exploiting sentence-level labels, which are easy to obtain, is one of the plausible methods to improve low-resource named entity recognition (NER), where token-level labels are costly to annotate. Current models for jointly learning sentence and token labeling are limited to binary classification. We present a joint model that supports multi-class classification and introduce a simple variant of self-attention that allows the model to learn scaling factors. Our model produces 3.78{\%}, 4.20{\%}, 2.08{\%} improvements in F1 over the BiLSTM-CRF baseline on e-commerce product titles in three different low-resource languages: Vietnamese, Thai, and Indonesian, respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kruengkrai-etal-2020-improving">
<titleInfo>
<title>Improving Low-Resource Named Entity Recognition using Joint Sentence and Token Labeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Canasai</namePart>
<namePart type="family">Kruengkrai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thien</namePart>
<namePart type="given">Hai</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharifah</namePart>
<namePart type="given">Mahani</namePart>
<namePart type="family">Aljunied</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidong</namePart>
<namePart type="family">Bing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Exploiting sentence-level labels, which are easy to obtain, is one of the plausible methods to improve low-resource named entity recognition (NER), where token-level labels are costly to annotate. Current models for jointly learning sentence and token labeling are limited to binary classification. We present a joint model that supports multi-class classification and introduce a simple variant of self-attention that allows the model to learn scaling factors. Our model produces 3.78%, 4.20%, 2.08% improvements in F1 over the BiLSTM-CRF baseline on e-commerce product titles in three different low-resource languages: Vietnamese, Thai, and Indonesian, respectively.</abstract>
<identifier type="citekey">kruengkrai-etal-2020-improving</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.523</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.523</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>5898</start>
<end>5905</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Low-Resource Named Entity Recognition using Joint Sentence and Token Labeling
%A Kruengkrai, Canasai
%A Nguyen, Thien Hai
%A Aljunied, Sharifah Mahani
%A Bing, Lidong
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F kruengkrai-etal-2020-improving
%X Exploiting sentence-level labels, which are easy to obtain, is one of the plausible methods to improve low-resource named entity recognition (NER), where token-level labels are costly to annotate. Current models for jointly learning sentence and token labeling are limited to binary classification. We present a joint model that supports multi-class classification and introduce a simple variant of self-attention that allows the model to learn scaling factors. Our model produces 3.78%, 4.20%, 2.08% improvements in F1 over the BiLSTM-CRF baseline on e-commerce product titles in three different low-resource languages: Vietnamese, Thai, and Indonesian, respectively.
%R 10.18653/v1/2020.acl-main.523
%U https://aclanthology.org/2020.acl-main.523
%U https://doi.org/10.18653/v1/2020.acl-main.523
%P 5898-5905
Markdown (Informal)
[Improving Low-Resource Named Entity Recognition using Joint Sentence and Token Labeling](https://aclanthology.org/2020.acl-main.523) (Kruengkrai et al., ACL 2020)
ACL