iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/31734254
Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 15:589:113507.
doi: 10.1016/j.ab.2019.113507. Epub 2019 Nov 15.

Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting

Affiliations

Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting

S M Hasan Mahmud et al. Anal Biochem. .

Abstract

Accurate identification of drug-target interaction (DTI) is a crucial and challenging task in the drug discovery process, having enormous benefit to the patients and pharmaceutical company. The traditional wet-lab experiments of DTI is expensive, time-consuming, and labor-intensive. Therefore, many computational techniques have been established for this purpose; although a huge number of interactions are still undiscovered. Here, we present pdti-EssB, a new computational model for identification of DTI using protein sequence and drug molecular structure. More specifically, each drug molecule is transformed as the molecular substructure fingerprint. For a protein sequence, different descriptors are utilized to represent its evolutionary, sequence, and structural information. Besides, our proposed method uses data balancing techniques to handle the imbalance problem and applies a novel feature eliminator to extract the best optimal features for accurate prediction. In this paper, four classes of DTI benchmark datasets are used to construct a predictive model with XGBoost. Here, the auROC is utilized as an evaluation metric to compare the performance of pdti-EssB method with recent methods, applying five-fold cross-validation. Finally, the experimental results indicate that our proposed method is able to outperform other approaches in predicting DTI, and introduces new drug-target interaction samples based on prediction probability scores. pdti-EssB webserver is available online at http://pdtiessb-uestc.com/.

Keywords: Data imbalance; Drug-target interaction; Feature extraction; Feature selection; Molecular substructure fingerprint; XGBoost classifier.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources