iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/29642579
Dual Effects of Alpha-Hydroxy Acids on the Skin - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Apr 10;23(4):863.
doi: 10.3390/molecules23040863.

Dual Effects of Alpha-Hydroxy Acids on the Skin

Affiliations
Review

Dual Effects of Alpha-Hydroxy Acids on the Skin

Sheau-Chung Tang et al. Molecules. .

Abstract

AHAs are organic acids with one hydroxyl group attached to the alpha position of the acid. AHAs including glycolic acid, lactic acid, malic acid, tartaric acid, and citric acid are often used extensively in cosmetic formulations. AHAs have been used as superficial peeling agents as well as to ameliorate the appearance of keratoses and acne in dermatology. However, caution should be exercised in relation to certain adverse reactions among patients using products with AHAs, including swelling, burning, and pruritus. Whether AHAs enhance or decrease photo damage of the skin remains unclear, compelling us to ask the question, is AHA a friend or a foe of the skin? The aim of this manuscript is to review the various biological effects and mechanisms of AHAs on human keratinocytes and in an animal model. We conclude that whether AHA is a friend or foe of human skin depends on its concentration. These mechanisms of AHAs are currently well understood, aiding the development of novel approaches for the prevention of UV-induced skin damage.

Keywords: UVB; alpha-hydroxy acids; apoptosis; glycolic acid; keratinocyte.

PubMed Disclaimer

Conflict of interest statement

The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
The structures of AHAs commonly used in dermatology including glycolic acid, lactic acid, malic acid, tartaric acid, and citric acid. AHAs are weak organic acids with one or more hydroxyl group attached to the alpha carbon, indicating α. Malic acid and citric acid contain a hydroxyl group in the α-position to one carboxyl group and in the β-position to the other carboxyl group. Tartaric acid is a dicarboxylic acid with two hydroxyl groups at the alpha position of the acid. Malic acid and citric acid are also prominent representatives in alpha hydroxyl acids and beta hydroxyl acids.
Figure 2
Figure 2
Molecular pathways involved in the effects of citric acid and malic acid on HaCaT cells. Citric acid inhibits the proliferation of HaCaT cells via the induction of cell-cycle arrest and apoptosis. Summarizing our previous studies evaluating the effects of treatment with citric acid or malic acid, HaCaT cells exhibit the apoptotic features of apoptotic bodies, DNA damage, and an increase of sub-G1 cells, resulting from activation of caspase-8, -9, and -3 and the induction of AIF and endonuclease G (Endo G) release from mitochondria. Citric acid (CA) and malic acid (MA)-induced apoptosis occur through multiple molecular pathways including the involvement of endoplasmic reticulum (ER) stress- and mitochondria-dependent signaling pathways. Red arrows indicate up-regulation; blue arrows indicate down-regulation. ROS: reactive oxygen species.
Figure 3
Figure 3
Glycolic acid (GA) had anti-inflammatory and photoprotective effects against UVB-irradiation in keratinocytes. (Left) UVB-irradiation activated the nuclear factor-kappa B (NF-kB) pathway and promoted the inflammasome complex assembly, which in ROS accumulation and the release of several proinflammatory cytokines (e.g., interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, IL-Iβ, COX-2, and IL-1β; (Right) Pretreatment with GA could activate DNMT-3B activity and induce the hypermethylation of promoters of NLRC4 and ASC genes, which subsequently hinder of the assembly of the inflammasome complex. GA also inhibited the UVB-induced promoter activity of NF-kB in keratinocyte cells.
Figure 4
Figure 4
Review of the various biological effects (phototoxicity or photoprotection) and mechanisms (apoptosis or anti-inflammation) of GA on human keratinocytes (HaCaT or NHEK), and in the mice animal model.

Similar articles

Cited by

References

    1. Andersen F.A. Final report on the safety assessment of glycolic acid, ammonium, calcium, potassium, and sodium glycolates, methyl, ethyl, propyl, and butyl glylates, and lactic acid, ammonium, calcium, potassium, sodium, and TEA-lactates, methyl, ethyl, isopropyl, and butyl lactates, and lauryl, myristyl, and cetyllactates. Int. J. Toxicol. 1998;17:1–241.
    1. Moy L.S., Murad H., Moy R.L. Glycolic acid peels for the treatment of wrinkles and photoaging. J. Dermatol. Surg. Oncol. 1993;19:243–246. doi: 10.1111/j.1524-4725.1993.tb00343.x. - DOI - PubMed
    1. Sharad J. Glycolic acid peel therapy—A current review. Clin. Cosmet. Investig. Dermatol. 2013;6:281–288. doi: 10.2147/CCID.S34029. - DOI - PMC - PubMed
    1. Ditre C.M., Griffin T.D., Murphy G.F., Sueki H., Telegan B., Johnson W.C., Yu R.J., Van Scott E.J. Effects of alpha-hydroxy acids on photoaged skin: A pilot clinical, histologic, and ultrastructural study. Pt 1J. Am. Acad. Dermatol. 1996;34:187–195. doi: 10.1016/S0190-9622(96)80110-1. - DOI - PubMed
    1. National Toxicology Program Photocarcinogenesis study of glycolic acid and salicylic acid (CAS Nos. 79-14-1 and 69-72-7) in SKH-1 mice (simulated solar light and topical application study) Natl. Toxicol. Progr. Tech. Rep. Ser. 2007;524:1–242. - PubMed