iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/27336234
Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct:150:299-305.
doi: 10.1016/j.envres.2016.05.039. Epub 2016 Jun 21.

Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

Affiliations
Free article

Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

Huaiyu Tian et al. Environ Res. 2016 Oct.
Free article

Erratum in

Abstract

Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment-mosquito-urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world.

Keywords: Climate; Guangzhou; Remote sensing; Urban dengue outbreak; Water surface area.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources