iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/26236231
Protective effects of ginseng on neurological disorders - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jul 16:7:129.
doi: 10.3389/fnagi.2015.00129. eCollection 2015.

Protective effects of ginseng on neurological disorders

Affiliations
Review

Protective effects of ginseng on neurological disorders

Wei-Yi Ong et al. Front Aging Neurosci. .

Abstract

Ginseng (Order: Apiales, Family: Araliaceae, Genus: Panax) has been used as a traditional herbal medicine for over 2000 years, and is recorded to have antianxiety, antidepressant and cognition enhancing properties. The protective effects of ginseng on neurological disorders are discussed in this review. Ginseng species and ginsenosides, and their intestinal metabolism and bioavailability are briefly introduced. This is followed by molecular mechanisms of effects of ginseng on the brain, including glutamatergic transmission, monoamine transmission, estrogen signaling, nitric oxide (NO) production, the Keap1/Nrf2 adaptive cellular stress pathway, neuronal survival, apoptosis, neural stem cells and neuroregeneration, microglia, astrocytes, oligodendrocytes and cerebral microvessels. The molecular mechanisms of the neuroprotective effects of ginseng in Alzheimer's disease (AD) including β-amyloid (Aβ) formation, tau hyperphosphorylation and oxidative stress, major depression, stroke, Parkinson's disease and multiple sclerosis are presented. It is hoped that this discussion will stimulate more studies on the use of ginseng in neurological disorders.

Keywords: brain; ginseng; ginsenoside; glial cells; neurodegeneration; neurons; neuroprotection.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Chemical structure of ginsenosides Rb1 and Rg1. Ginsenoside Rb1 is an example for 20 (S)-PD and ginsenoside Rg1 is an example for 20 (S)-PT type of ginsenosides.
Figure 2
Figure 2
Hypothetical diagram showing the effects of ginseng on signal transduction processes in the brain. phosphatidylcholine (PtdCho); lyso-phosphatidylcholine (lyso-PtdCho); cytosolic phospholipase A2 (cPLA2); arachidonic acid (AA); platelet activating factor (PAF); reactive oxygen species (ROS); Nuclear factor-kappa B (NF-κB); nuclear factor erythroid 2-related factor 2 (Nrf2); cyclooxygenase-2 (COX-2); lipoxygenase (LOX); secretory phospholipase A2 (sPLA2); inducible nitric oxide synthase (iNOS); tumor necrosis factor-α (TNF-α); interleukin-1β (IL-1β); interleukin-6 (IL-6); kelch-like erythroid Cap “n” Collar homologue-associated protein 1 (Keap1); NFE2-related factor 2 (Nrf2); antioxidant response element (ARE); quinine oxidoreductase (QR); hemeoxygenase 1 (HO-1); superoxide dismutase (SOD); glutathione peroxidase (GP); γ-glutamylcysteine ligase (γ-GCL); heat shock proteins (HSPs); amyloid precursor protein (APP); soluble amyloid precursor protein (sAPP); β-amyloid (Aβ); α secretase (ADAM10); and β-secretase (BACE1). This diagram is based on information provided in Choi et al. (2010), Jung et al. (2010), Li et al. (2010), Ye et al. (2011b), Hwang et al. (2012b), Karpagam et al. (2013) and Wang et al. (2013c).

Similar articles

Cited by

References

    1. Attele A. S., Wu J. A., Yuan C. S. (1999). Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685–1693. 10.1016/S0006-2952(99)00212-9 - DOI - PubMed
    1. Bae E. A., Kim E. J., Park J. S., Kim H. S., Ryu J. H., Kim D. H. (2006). Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med. 72, 627–633. 10.1055/s-2006-931563 - DOI - PubMed
    1. Baek S. H., Bae O. N., Park J. H. (2012). Recent methodology in ginseng analysis. J. Ginseng Res. 36, 119–134. 10.5142/jgr.2012.36.2.119 - DOI - PMC - PubMed
    1. Bowie L. E., Roscoe W. A., Lui E. M., Smith R., Karlik S. J. (2012). Effects of an aqueous extract of North American ginseng on MOG (35-55)-induced EAE in mice. Can. J. Physiol. Pharmacol. 90, 933–939. 10.1139/y2012-092 - DOI - PubMed
    1. Chang Y. S., Seo E. K., Gyllenhaal C., Block K. I. (2003). Panax ginseng: a role in cancer therapy? Integr. Cancer Ther. 2, 13–33. 10.1177/1534735403251167 - DOI - PubMed

LinkOut - more resources