iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/24231866
Continuous energy minimization for multitarget tracking - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;36(1):58-72.
doi: 10.1109/TPAMI.2013.103.

Continuous energy minimization for multitarget tracking

Affiliations

Continuous energy minimization for multitarget tracking

Anton Milan et al. IEEE Trans Pattern Anal Mach Intell. 2014 Jan.

Abstract

Many recent advances in multiple target tracking aim at finding a (nearly) optimal set of trajectories within a temporal window. To handle the large space of possible trajectory hypotheses, it is typically reduced to a finite set by some form of data-driven or regular discretization. In this work, we propose an alternative formulation of multitarget tracking as minimization of a continuous energy. Contrary to recent approaches, we focus on designing an energy that corresponds to a more complete representation of the problem, rather than one that is amenable to global optimization. Besides the image evidence, the energy function takes into account physical constraints, such as target dynamics, mutual exclusion, and track persistence. In addition, partial image evidence is handled with explicit occlusion reasoning, and different targets are disambiguated with an appearance model. To nevertheless find strong local minima of the proposed nonconvex energy, we construct a suitable optimization scheme that alternates between continuous conjugate gradient descent and discrete transdimensional jump moves. These moves, which are executed such that they always reduce the energy, allow the search to escape weak minima and explore a much larger portion of the search space of varying dimensionality. We demonstrate the validity of our approach with an extensive quantitative evaluation on several public data sets.

PubMed Disclaimer

Similar articles

Cited by