Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces
- PMID: 23607558
- DOI: 10.1162/NECO_a_00460
Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces
Abstract
Closed-loop decoder adaptation (CLDA) is an emerging paradigm for achieving rapid performance improvements in online brain-machine interface (BMI) operation. Designing an effective CLDA algorithm requires making multiple important decisions, including choosing the timescale of adaptation, selecting which decoder parameters to adapt, crafting the corresponding update rules, and designing CLDA parameters. These design choices, combined with the specific settings of CLDA parameters, will directly affect the algorithm's ability to make decoder parameters converge to values that optimize performance. In this article, we present a general framework for the design and analysis of CLDA algorithms and support our results with experimental data of two monkeys performing a BMI task. First, we analyze and compare existing CLDA algorithms to highlight the importance of four critical design elements: the adaptation timescale, selective parameter adaptation, smooth decoder updates, and intuitive CLDA parameters. Second, we introduce mathematical convergence analysis using measures such as mean-squared error and KL divergence as a useful paradigm for evaluating the convergence properties of a prototype CLDA algorithm before experimental testing. By applying these measures to an existing CLDA algorithm, we demonstrate that our convergence analysis is an effective analytical tool that can ultimately inform and improve the design of CLDA algorithms.
Similar articles
-
Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.Neural Comput. 2014 Sep;26(9):1811-39. doi: 10.1162/NECO_a_00632. Epub 2014 Jun 12. Neural Comput. 2014. PMID: 24922501
-
Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):468-77. doi: 10.1109/TNSRE.2012.2185066. IEEE Trans Neural Syst Rehabil Eng. 2012. PMID: 22772374
-
Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces.Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2768-71. doi: 10.1109/EMBC.2013.6610114. Annu Int Conf IEEE Eng Med Biol Soc. 2013. PMID: 24110301
-
Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.Prog Brain Res. 2011;192:83-102. doi: 10.1016/B978-0-444-53355-5.00006-3. Prog Brain Res. 2011. PMID: 21763520 Review.
-
Extraction algorithms for cortical control of arm prosthetics.Curr Opin Neurobiol. 2001 Dec;11(6):701-7. doi: 10.1016/s0959-4388(01)00272-0. Curr Opin Neurobiol. 2001. PMID: 11741021 Review.
Cited by
-
Non-invasive brain-machine interface control with artificial intelligence copilots.bioRxiv [Preprint]. 2024 Oct 12:2024.10.09.615886. doi: 10.1101/2024.10.09.615886. bioRxiv. 2024. PMID: 39416032 Free PMC article. Preprint.
-
Electroencephalogram-based adaptive closed-loop brain-computer interface in neurorehabilitation: a review.Front Comput Neurosci. 2024 Sep 20;18:1431815. doi: 10.3389/fncom.2024.1431815. eCollection 2024. Front Comput Neurosci. 2024. PMID: 39371523 Free PMC article. Review.
-
Assistive sensory-motor perturbations influence learned neural representations.bioRxiv [Preprint]. 2024 Mar 20:2024.03.20.585972. doi: 10.1101/2024.03.20.585972. bioRxiv. 2024. PMID: 38562772 Free PMC article. Preprint.
-
Challenges of neural interfaces for stroke motor rehabilitation.Front Hum Neurosci. 2023 Sep 18;17:1070404. doi: 10.3389/fnhum.2023.1070404. eCollection 2023. Front Hum Neurosci. 2023. PMID: 37789905 Free PMC article.
-
Invariant neural dynamics drive commands to control different movements.Curr Biol. 2023 Jul 24;33(14):2962-2976.e15. doi: 10.1016/j.cub.2023.06.027. Epub 2023 Jul 3. Curr Biol. 2023. PMID: 37402376 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources