Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species
- PMID: 22993238
- PMCID: PMC3497141
- DOI: 10.1098/rsbl.2012.0703
Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species
Abstract
Squamate reptiles (lizards and snakes) are one of the most diverse groups of terrestrial vertebrates. Recent molecular analyses have suggested a very different squamate phylogeny relative to morphological hypotheses, but many aspects remain uncertain from molecular data. Here, we analyse higher-level squamate phylogeny with a molecular dataset of unprecedented size, including 161 squamate species for up to 44 nuclear genes each (33 717 base pairs), using both concatenated and species-tree methods for the first time. Our results strongly resolve most squamate relationships and reveal some surprising results. In contrast to most other recent studies, we find that dibamids and gekkotans are together the sister group to all other squamates. Remarkably, we find that the distinctive scolecophidians (blind snakes) are paraphyletic with respect to other snakes, suggesting that snakes were primitively burrowers and subsequently re-invaded surface habitats. Finally, we find that some clades remain poorly supported, despite our extensive data. Our analyses show that weakly supported clades are associated with relatively short branches for which individual genes often show conflicting relationships. These latter results have important implications for all studies that attempt to resolve phylogenies with large-scale phylogenomic datasets.
Figures
Similar articles
-
The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes.C R Biol. 2005 Oct-Nov;328(10-11):1000-8. doi: 10.1016/j.crvi.2005.10.001. Epub 2005 Oct 27. C R Biol. 2005. PMID: 16286089
-
Molecular phylogenetics of squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree.Syst Biol. 2004 Oct;53(5):735-57. doi: 10.1080/10635150490522340. Syst Biol. 2004. PMID: 15545252
-
Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species.Mol Phylogenet Evol. 2016 Jan;94(Pt B):537-547. doi: 10.1016/j.ympev.2015.10.009. Epub 2015 Oct 22. Mol Phylogenet Evol. 2016. PMID: 26475614
-
The molecular evolutionary tree of lizards, snakes, and amphisbaenians.C R Biol. 2009 Feb-Mar;332(2-3):129-39. doi: 10.1016/j.crvi.2008.07.010. Epub 2008 Nov 28. C R Biol. 2009. PMID: 19281946 Review.
-
[Genomic structure and sex determination in squamate reptiles].Tsitologiia. 2013;55(4):253-8. Tsitologiia. 2013. PMID: 23875459 Review. Russian.
Cited by
-
Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos.Genes (Basel). 2024 Mar 28;15(4):429. doi: 10.3390/genes15040429. Genes (Basel). 2024. PMID: 38674364 Free PMC article.
-
Body size estimation from isolated fossil bones reveals deep time evolutionary trends in North American lizards.PLoS One. 2024 Jan 5;19(1):e0296318. doi: 10.1371/journal.pone.0296318. eCollection 2024. PLoS One. 2024. PMID: 38180961 Free PMC article.
-
Turtle skull development unveils a molecular basis for amniote cranial diversity.Sci Adv. 2023 Nov 17;9(46):eadi6765. doi: 10.1126/sciadv.adi6765. Epub 2023 Nov 15. Sci Adv. 2023. PMID: 37967181 Free PMC article.
-
The Adrenal Gland of Squamata (Reptilia): A Comparative Overview.Animals (Basel). 2023 Aug 22;13(17):2686. doi: 10.3390/ani13172686. Animals (Basel). 2023. PMID: 37684950 Free PMC article. Review.
-
The State of Squamate Genomics: Past, Present, and Future of Genome Research in the Most Speciose Terrestrial Vertebrate Order.Genes (Basel). 2023 Jul 1;14(7):1387. doi: 10.3390/genes14071387. Genes (Basel). 2023. PMID: 37510292 Free PMC article. Review.
References
-
- Sites J. W., Jr, Reeder T. W., Wiens J. J. 2011. Phylogenetic insights on evolutionary novelties in lizards and snakes: sex, birth, bodies, niches, and venom. Annu. Rev. Ecol. Evol. Syst. 42, 227–24410.1146/annurev-ecolsys-102710-145051 (doi:10.1146/annurev-ecolsys-102710-145051) - DOI - DOI
-
- Kasturiratne A., Wickremasinghe A. R., de Silva N., Gunawardena N. K., Pathmeswaran A., Premaratna R., Savioli L., Lalloo D. G., de Silva J. 2008. Estimation of the global burden of snakebite. PLoS Med. 5, e218.10.1371/journal.pmed.0050218 (doi:10.1371/journal.pmed.0050218) - DOI - DOI - PMC - PubMed
-
- Townsend T., Larson A., Louis E. J., Macey J. R. 2004. Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 53, 735–75710.1080/10635150490522340 (doi:10.1080/10635150490522340) - DOI - DOI - PubMed
-
- Vidal N., Hedges S. B. 2005. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C. R. Biol. 328, 1000–100810.1016/j.crvi.2005.10.001 (doi:10.1016/j.crvi.2005.10.001) - DOI - DOI - PubMed
-
- Wiens J. J., Kuczynski C. A., Townsend T., Reeder T. W., Mulcahy D. G., Sites J. W., Jr 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst. Biol. 59, 674–68810.1093/sysbio/syq048 (doi:10.1093/sysbio/syq048) - DOI - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources