iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/22792057
Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2012;8(7):e1002587.
doi: 10.1371/journal.pcbi.1002587. Epub 2012 Jul 5.

Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia

Collaborators, Affiliations
Meta-Analysis

Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia

Peilin Jia et al. PLoS Comput Biol. 2012.

Abstract

With the recent success of genome-wide association studies (GWAS), a wealth of association data has been accomplished for more than 200 complex diseases/traits, proposing a strong demand for data integration and interpretation. A combinatory analysis of multiple GWAS datasets, or an integrative analysis of GWAS data and other high-throughput data, has been particularly promising. In this study, we proposed an integrative analysis framework of multiple GWAS datasets by overlaying association signals onto the protein-protein interaction network, and demonstrated it using schizophrenia datasets. Building on a dense module search algorithm, we first searched for significantly enriched subnetworks for schizophrenia in each single GWAS dataset and then implemented a discovery-evaluation strategy to identify module genes with consistent association signals. We validated the module genes in an independent dataset, and also examined them through meta-analysis of the related SNPs using multiple GWAS datasets. As a result, we identified 205 module genes with a joint effect significantly associated with schizophrenia; these module genes included a number of well-studied candidate genes such as DISC1, GNA12, GNA13, GNAI1, GPR17, and GRIN2B. Further functional analysis suggested these genes are involved in neuronal related processes. Additionally, meta-analysis found that 18 SNPs in 9 module genes had P(meta)<1 × 10⁻⁴, including the gene HLA-DQA1 located in the MHC region on chromosome 6, which was reported in previous studies using the largest cohort of schizophrenia patients to date. These results demonstrated our bi-directional network-based strategy is efficient for identifying disease-associated genes with modest signals in GWAS datasets. This approach can be applied to any other complex diseases/traits where multiple GWAS datasets are available.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Materials and MethodscMaterials and Methodsgenes for schizophrenia.
Figure 2
Figure 2. Distribution of module scores (Zm) from two GWAS datasets.
Each circle in the plot represents a module. The circles in red indicate those selected modules (see text). X-axis: module scores from the discovery GWAS dataset. Y-axis: module scores from the evaluation GWAS dataset.
Figure 3
Figure 3. Meta-analysis results of the two most significant genes.
Figures were generated using the LocusZoom online tool. X-axis is the genome coordinate. Y-axis is the -logP meta values. Each point represents a SNP. The color of points is according to their level of linkage disequilibrium (LD) with the index SNPs. In this case, the index SNP is the most significant one in each panel. The LD measure is r2 based on the HapMap CEU population (release 22).

Similar articles

Cited by

References

    1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–9367. - PMC - PubMed
    1. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–752. - PMC - PubMed
    1. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460:753–757. - PMC - PubMed
    1. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460:744–747. - PMC - PubMed
    1. Wang L, Jia P, Wolfinger RD, Chen X, Zhao Z. Gene set analysis of genome-wide association studies: Methodological issues and perspectives. Genomics. 2011;98:1–8. - PMC - PubMed

Publication types