iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/22226162
Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;335(1):32-50.
doi: 10.1016/j.crvi.2011.11.002. Epub 2011 Dec 28.

Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes

Affiliations
Free article

Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes

Alexandre Hassanin et al. C R Biol. 2012 Jan.
Free article

Abstract

The order Cetartiodactyla includes cetaceans (whales, dolphins and porpoises) that are found in all oceans and seas, as well as in some rivers, and artiodactyls (ruminants, pigs, peccaries, hippos, camels and llamas) that are present on all continents, except Antarctica and until recent invasions, Australia. There are currently 332 recognized cetartiodactyl species, which are classified into 132 genera and 22 families. Most phylogenetic studies have focused on deep relationships, and no comprehensive time-calibrated tree for the group has been published yet. In this study, 128 new complete mitochondrial genomes of Cetartiodactyla were sequenced and aligned with those extracted from nucleotide databases. Our alignment includes 14,902 unambiguously aligned nucleotide characters for 210 taxa, representing 183 species, 107 genera, and all cetartiodactyl families. Our mtDNA data produced a statistically robust tree, which is largely consistent with previous classifications. However, a few taxa were found to be para- or polyphyletic, including the family Balaenopteridae, as well as several genera and species. Accordingly, we propose several taxonomic changes in order to render the classification compatible with our molecular phylogeny. In some cases, the results can be interpreted as possible taxonomic misidentification or evidence for mtDNA introgression. The existence of three new cryptic species of Ruminantia should therefore be confirmed by further analyses using nuclear data. We estimate divergence times using Bayesian relaxed molecular clock models. The deepest nodes appeared very sensitive to prior assumptions leading to unreliable estimates, primarily because of the misleading effects of rate heterogeneity, saturation and divergent outgroups. In addition, we detected that Whippomorpha contains slow-evolving taxa, such as large whales and hippos, as well as fast-evolving taxa, such as river dolphins. Our results nevertheless indicate that the evolutionary history of cetartiodactyls was punctuated by four main phases of rapid radiation during the Cenozoic era: the sudden occurrence of the three extant lineages within Cetartiodactyla (Cetruminantia, Suina and Tylopoda); the basal diversification of Cetacea during the Early Oligocene; and two radiations that involve Cetacea and Pecora, one at the Oligocene/Miocene boundary and the other in the Middle Miocene. In addition, we show that the high species diversity now observed in the families Bovidae and Cervidae accumulated mainly during the Late Miocene and Plio-Pleistocene.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources