iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/20887256
Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Nov;11(7):609-28.
doi: 10.2174/138920310794109193.

Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility

Affiliations
Comparative Study

Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility

Tuo Zhang et al. Curr Protein Pept Sci. 2010 Nov.

Abstract

Identification and prediction of RNA-binding residues (RBRs) provides valuable insights into the mechanisms of protein-RNA interactions. We analyzed the contributions of a wide range of factors including amino acid sequence, evolutionary conservation, secondary structure and solvent accessibility, to the prediction/characterization of RBRs. Five feature sets were designed and feature selection was performed to find and investigate relevant features. We demonstrate that (1) interactions with positively charged amino acids Arg and Lys are preferred by the egatively charged nucleotides; (2) Gly provides flexibility for the RNA binding sites; (3) Glu with negatively charged side chain and several hydrophobic residues such as Leu, Val, Ala and Phe are disfavored in the RNA-binding sites; (4) coil residues, especially in long segments, are more flexible (than other secondary structures) and more likely to interact with RNA; (5) helical residues are more rigid and consequently they are less likely to bind RNA; and (6) residues partially exposed to the solvent are more likely to form RNA-binding sites. We introduce a novel sequence-based predictor of RBRs, RBRpred, which utilizes the selected features. RBRpred is comprehensively tested on three datasets with varied atom distance cutoffs by performing both five-fold cross validation and jackknife tests and achieves Matthew's correlation coefficient (MCC) of 0.51, 0.48 and 0.42, respectively. The quality is comparable to or better than that for state-of-the-art predictors that apply the distancebased cutoff definition. We show that the most important factor for RBRs prediction is evolutionary conservation, followed by the amino acid sequence, predicted secondary structure and predicted solvent accessibility. We also investigate the impact of using native vs. predicted secondary structure and solvent accessibility. The predictions are sufficient for the RBR prediction and the knowledge of the actual solvent accessibility helps in predictions for lower distance cutoffs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources