iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/19901983
Spatial evaluation and modeling of Dengue seroprevalence and vector density in Rio de Janeiro, Brazil - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov 10;3(11):e545.
doi: 10.1371/journal.pntd.0000545.

Spatial evaluation and modeling of Dengue seroprevalence and vector density in Rio de Janeiro, Brazil

Affiliations

Spatial evaluation and modeling of Dengue seroprevalence and vector density in Rio de Janeiro, Brazil

Nildimar Alves Honório et al. PLoS Negl Trop Dis. .

Abstract

Background: Rio de Janeiro, Brazil, experienced a severe dengue fever epidemic in 2008. This was the worst epidemic ever, characterized by a sharp increase in case-fatality rate, mainly among younger individuals. A combination of factors, such as climate, mosquito abundance, buildup of the susceptible population, or viral evolution, could explain the severity of this epidemic. The main objective of this study is to model the spatial patterns of dengue seroprevalence in three neighborhoods with different socioeconomic profiles in Rio de Janeiro. As blood sampling coincided with the peak of dengue transmission, we were also able to identify recent dengue infections and visually relate them to Aedes aegypti spatial distribution abundance. We analyzed individual and spatial factors associated with seroprevalence using Generalized Additive Model (GAM).

Methodology/principal findings: Three neighborhoods were investigated: a central urban neighborhood, and two isolated areas characterized as a slum and a suburban area. Weekly mosquito collections started in September 2006 and continued until March 2008. In each study area, 40 adult traps and 40 egg traps were installed in a random sample of premises, and two infestation indexes calculated: mean adult density and mean egg density. Sera from individuals living in the three neighborhoods were collected before the 2008 epidemic (July through November 2007) and during the epidemic (February through April 2008). Sera were tested for DENV-reactive IgM, IgG, Nested RT-PCR, and Real Time RT-PCR. From the before-after epidemics paired data, we described seroprevalence, recent dengue infections (asymptomatic or not), and seroconversion. Recent dengue infection varied from 1.3% to 14.1% among study areas. The highest IgM seropositivity occurred in the slum, where mosquito abundance was the lowest, but household conditions were the best for promoting contact between hosts and vectors. By fitting spatial GAM we found dengue seroprevalence hotspots located at the entrances of the two isolated communities, which are commercial activity areas with high human movement. No association between recent dengue infection and household's high mosquito abundance was observed in this sample.

Conclusions/significance: This study contributes to better understanding the dynamics of dengue in Rio de Janeiro by assessing the relationship between dengue seroprevalence, recent dengue infection, and vector density. In conclusion, the variation in spatial seroprevalence patterns inside the neighborhoods, with significantly higher risk patches close to the areas with large human movement, suggests that humans may be responsible for virus inflow to small neighborhoods in Rio de Janeiro. Surveillance guidelines should be further discussed, considering these findings, particularly the spatial patterns for both human and mosquito populations.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Notified dengue cases in Rio de Janeiro State from 2000 to 2008.
Monthly cases showing two large epidemic in 2002 and 2008 and three small outbreaks in 2001, 2006 and 2007 (Source: State Secretary of Healthy of Rio de Janeiro 2008).
Figure 2
Figure 2. Map of Rio de Janeiro showing the location of the three study sites.
Tubiacanga (1) is a suburban mostly a residential neighborhood, located in an island, in the Guanabara Bay. Access is limited to a single main route. Higienópolis (2) is an urban neighborhood densely populated, totally urbanized: paved streets, with adequate water supply and garbage collection services. However it is surrounded by some of the largest slums of the city. Palmares (3) is a recently settled slum between a rain forest mountainous range and a polluted river, with just one road access.
Figure 3
Figure 3. Time series of notified dengue cases, number of recent dengue infections and Aedes aegypti abundance.
Time series of notified dengue cases in the three neighborhoods, according to the Healthy Authorities from the city of Rio de Janeiro (SMS-RJ 2008), number of serum samples collected, number of recent dengue infections, and Ae. aegypti abundance measured as mean adult density (MAD) and mean egg density (MED) in Higienópolis (urban), Tubiacanga (suburban) and Palmares (suburban slum), Rio de Janeiro, Brazil.
Figure 4
Figure 4. Dengue seroprevalence per age group.
Dengue seroprevalence per age group (1 to 4, 5 to 9, 10 to 14, 15 to 19), red are positive and blue indicate negative cases in Higienópolis (urban), Tubiacanga (suburban) and Palmares (suburban slum) neighborhoods in Rio de Janeiro, Brazil.
Figure 5
Figure 5. Effect of age on dengue seroprevalence.
A smooth term estimating the effect of age on dengue seroprevalence is depicted with the black line. Dashed lines are the 95% confidence interval. Green line indicates no effect and red dotted lines divide age in 10 years interval in each studied neighborhood.
Figure 6
Figure 6. Spatial odds ratio for seroprevalence.
Crude odds ratio surface estimated by a GAM model. Seropositive cases are represented in red dots and seronegative in blue. Red lines circle areas with significant higher positiveness density, whilst blue lines are significant lower prevalence levels in Higienópolis (urban), Tubiacanga (suburban) and Palmares (suburban slum) neighborhoods in Rio de Janeiro, Brazil.
Figure 7
Figure 7. Map of adult Aedes aegypti distribution and recent dengue infections.
Spatial relative risk of Ae. aegypti adults density in Higienópolis (urban), Tubiacanga (suburban) and Palmares (suburban slum) neighborhoods in Rio de Janeiro, Brazil. Red dots indicate the households of individuals with recent dengue infection, blue dots individuals with no evidence of recent dengue infection.

Similar articles

Cited by

References

    1. Gubler DJ. Resurgent vector-borne diseases as a globalhealth problem. Emerg Infec Dis. 1998;4:442–449. - PMC - PubMed
    1. Schatzmayr HG. Dengue situation in Brazil by year 2000. Mem Inst Oswaldo Cruz. 2000;95:179–181. - PubMed
    1. Gubler DJ, Kuno G. Wallingford, United Kingdom: CAB International; 1997. Dengue and Dengue Hemorrhagic Fever:
    1. Scott TW, Lorenz LH, Clark GG, Strickman D, Kittayapong P, et al. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol. 2000;37:89–101. - PubMed
    1. Halstead SB. Dengue. Lancet. 2007;370:1644–1652. - PubMed

Publication types

MeSH terms

Substances