Nonsomatotopic organization of the higher motor centers in octopus
- PMID: 19765993
- DOI: 10.1016/j.cub.2009.07.067
Nonsomatotopic organization of the higher motor centers in octopus
Abstract
Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.
Similar articles
-
Control of octopus arm extension by a peripheral motor program.Science. 2001 Sep 7;293(5536):1845-8. doi: 10.1126/science.1060976. Science. 2001. PMID: 11546877
-
Analyzing octopus movements using three-dimensional reconstruction.J Neurophysiol. 2007 Sep;98(3):1775-90. doi: 10.1152/jn.00739.2006. Epub 2007 Jul 11. J Neurophysiol. 2007. PMID: 17625060
-
Neurobiology: motor control of flexible octopus arms.Nature. 2005 Feb 10;433(7026):595-6. doi: 10.1038/433595a. Nature. 2005. PMID: 15703737
-
How to move with no rigid skeleton? The octopus has the answers.Biologist (London). 2002 Dec;49(6):250-4. Biologist (London). 2002. PMID: 12486300 Review.
-
An embodied view of octopus neurobiology.Curr Biol. 2012 Oct 23;22(20):R887-92. doi: 10.1016/j.cub.2012.09.001. Curr Biol. 2012. PMID: 23098601 Review.
Cited by
-
Single unit electrophysiology recordings and computational modeling can predict octopus arm movement.bioRxiv [Preprint]. 2024 Sep 19:2024.09.13.612676. doi: 10.1101/2024.09.13.612676. bioRxiv. 2024. PMID: 39345497 Free PMC article. Preprint.
-
Functional organization of visual responses in the octopus optic lobe.Curr Biol. 2023 Jul 10;33(13):2784-2793.e3. doi: 10.1016/j.cub.2023.05.069. Epub 2023 Jun 20. Curr Biol. 2023. PMID: 37343556 Free PMC article.
-
Toward an Understanding of Octopus Arm Motor Control.Integr Comp Biol. 2023 Dec 29;63(6):1277-1284. doi: 10.1093/icb/icad069. Integr Comp Biol. 2023. PMID: 37327080 Free PMC article. Review.
-
Mechanosensory signal transmission in the arms and the nerve ring, an interarm connective, of Octopus bimaculoides.iScience. 2023 Apr 24;26(5):106722. doi: 10.1016/j.isci.2023.106722. eCollection 2023 May 19. iScience. 2023. PMID: 37216097 Free PMC article.
-
Functional organization of visual responses in the octopus optic lobe.bioRxiv [Preprint]. 2023 Feb 16:2023.02.16.528734. doi: 10.1101/2023.02.16.528734. bioRxiv. 2023. Update in: Curr Biol. 2023 Jul 10;33(13):2784-2793.e3. doi: 10.1016/j.cub.2023.05.069. PMID: 36824726 Free PMC article. Updated. Preprint.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials