Knockout rats via embryo microinjection of zinc-finger nucleases
- PMID: 19628861
- PMCID: PMC2831805
- DOI: 10.1126/science.1172447
Knockout rats via embryo microinjection of zinc-finger nucleases
Abstract
The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.
Figures
Similar articles
-
Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases.PLoS One. 2011;6(6):e21045. doi: 10.1371/journal.pone.0021045. Epub 2011 Jun 13. PLoS One. 2011. PMID: 21695153 Free PMC article.
-
Targeted integration in rat and mouse embryos with zinc-finger nucleases.Nat Biotechnol. 2011 Jan;29(1):64-7. doi: 10.1038/nbt.1731. Epub 2010 Dec 12. Nat Biotechnol. 2011. PMID: 21151125
-
Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN).PLoS One. 2009;4(2):e4348. doi: 10.1371/journal.pone.0004348. Epub 2009 Feb 9. PLoS One. 2009. PMID: 19198653 Free PMC article.
-
Zinc-finger nucleases: a powerful tool for genetic engineering of animals.Transgenic Res. 2010 Jun;19(3):363-71. doi: 10.1007/s11248-009-9323-7. Epub 2009 Sep 26. Transgenic Res. 2010. PMID: 19821047 Review.
-
Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.Dev Growth Differ. 2014 Jan;56(1):46-52. doi: 10.1111/dgd.12110. Epub 2013 Dec 27. Dev Growth Differ. 2014. PMID: 24372523 Review.
Cited by
-
Skeletal phenotypes and molecular mechanisms in aging mice.Zool Res. 2024 Jul 18;45(4):724-746. doi: 10.24272/j.issn.2095-8137.2023.397. Zool Res. 2024. PMID: 38894518 Free PMC article. Review.
-
Molecular approaches to mammalian uterine receptivity for conceptus implantation.J Reprod Dev. 2024 Aug 7;70(4):207-212. doi: 10.1262/jrd.2024-022. Epub 2024 May 18. J Reprod Dev. 2024. PMID: 38763760 Free PMC article. Review.
-
Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock.Funct Integr Genomics. 2024 May 6;24(3):81. doi: 10.1007/s10142-024-01364-5. Funct Integr Genomics. 2024. PMID: 38709433 Review.
-
Outlook on genome editing application to cattle.J Vet Sci. 2024 Jan;25(1):e10. doi: 10.4142/jvs.23133. J Vet Sci. 2024. PMID: 38311323 Free PMC article. Review.
-
Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects.Curr Gene Ther. 2024;24(5):377-394. doi: 10.2174/0115665232279528240115075352. Curr Gene Ther. 2024. PMID: 38258771 Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources