iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.ncbi.nlm.nih.gov/pubmed/16762476
Apiaceous vegetable constituents inhibit human cytochrome P-450 1A2 (hCYP1A2) activity and hCYP1A2-mediated mutagenicity of aflatoxin B1 - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;44(9):1474-84.
doi: 10.1016/j.fct.2006.04.010. Epub 2006 Apr 27.

Apiaceous vegetable constituents inhibit human cytochrome P-450 1A2 (hCYP1A2) activity and hCYP1A2-mediated mutagenicity of aflatoxin B1

Affiliations

Apiaceous vegetable constituents inhibit human cytochrome P-450 1A2 (hCYP1A2) activity and hCYP1A2-mediated mutagenicity of aflatoxin B1

Sabrina Peterson et al. Food Chem Toxicol. 2006 Sep.

Abstract

In humans, apiaceous vegetables (carrots, parsnips, celery, parsley, etc.) inhibit cytochrome P-450 1A2, a biotransformation enzyme known to activate several procarcinogens, including aflatoxin B1 (AFB). We evaluated eight phytochemicals from apiaceous vegetables for effects on human cytochrome P-450 1A2 (hCYP1A2) activity using a methoxyresorufin O-demethylase (MROD) assay and a trp-recombination assay. Saccharomyces cerevisiae was used for heterologous CYP1A2 expression and this yeast strain is also diploid and auxotrophic for tryptophan due to mutations in the trp5 alleles. When these two alleles undergo AFB-induced mitotic recombination, gene conversion occurs, allowing yeast to grow in the absence of tryptophan. The apiaceous constituents psoralen, 5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP), and apigenin were potent inhibitors of hCYP1A2-mediated MROD activity in yeast microsomes, whereas quercetin was a modest hCYP1A2 inhibitor. Naringenin, caffeic acid, and chlorogenic acid did not inhibit hCYP1A2-mediated MROD activity. The 2-h pretreatment of intact yeast cells with psoralen, 5-MOP, and 8-MOP significantly improved cell survival after subsequent 4-h AFB treatment and reduced hCYP1A2-mediated mutagenicity of AFB. Apigenin also significantly decreased mutagenicity. These results suggest that in vivo CYP1A2 inhibition by apiaceous vegetables may be due to the phytochemicals present and imply that apiaceous vegetable intake may be chemopreventive by inhibiting CYP1A2-mediated carcinogen activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources