iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://www.cs.cas.cz/portal/AlgoMath/MathematicalAnalysis/SpecialFunctions/SignumFunction.htm
SignumFunction

Main Index Mathematical Analysis Special Functions
  Subject Index
comment on the page

Signum Function

The signum function is the real valued function defined for real typeset structure as follows

sgn(x) = {+ 1,         if x > 0,            0,           if x = 0,            -1,          if x < 0.

[Graphics:HTMLFiles/SignumFunction_3.gif]

For all real typeset structure we have  typeset structure. Similarly,  typeset structure. If typeset structure then also typeset structure. The second property implies that for real non-zero typeset structure we have typeset structure.  

For a complex argument typeset structure it is defined by

sgn(z) = {            0,         if z = 0,              z           -----,           | z |      if z != 0,

where typeset structure denotes the magnitude (absolute value) of typeset structure. In other words, the signum function project a non-zero complex number to the unit circle typeset structure.

We have typeset structure, where typeset structure is the complex conjugate of typeset structure.

Cite this web-page as:

Štefan Porubský: Signum Function.

Page created  .