iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://wikipedia.org/wiki/Orthologous_MAtrix
Orthologous MAtrix - Wikipedia Jump to content

Orthologous MAtrix

From Wikipedia, the free encyclopedia
OMA
Content
Descriptionorthology inference among 1000 complete genomes.
Contact
LaboratoryETH Zurich
AuthorsChristophe Dessimoz
Adrian Schneider
Adrian Altenhoff
Gaston H. Gonnet
Primary citationAltenhoff et al.[1]
Release date2004
Access
Websiteomabrowser.org
Download URLhttp://omabrowser.org/All/download.html
Web service URLwsdl
Miscellaneous
Data release
frequency
2 releases per year

OMA (Orthologous MAtrix) is a database of orthologs extracted from available complete genomes.[1][2] The orthology predictions of OMA are available in several forms:

  • OMA Pairs: for a given gene, a list of predicted orthologs in other species is provided.
  • OMA Groups: a set of genes across different species which are all orthologous.
  • OMA Hierarchical Groups: the set of all genes that have evolved from a single ancestral gene in a given taxonomic range.
  • OMA Genome Pair view: the list of all predicted orthologs between two species.

See also

[edit]

References

[edit]
  1. ^ a b Altenhoff, Adrian M; Schneider Adrian; Gonnet Gaston H; Dessimoz Christophe (Jan 2011). "OMA 2011: orthology inference among 1000 complete genomes". Nucleic Acids Res. 39 (Database issue). England: D289-94. doi:10.1093/nar/gkq1238. PMC 3013747. PMID 21113020.
  2. ^ Altenhoff, Adrian M; Glover, Natasha M; Train, Clément-Marie; Kaleb, Klara; Warwick Vesztrocy, Alex; Dylus, David; de Farias, Tarcisio M; Zile, Karina; Stevenson, Charles; Long, Jiao; Redestig, Henning; Gonnet, Gaston H; Dessimoz, Christophe (2018). "The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces". Nucleic Acids Research. 46 (D1): D477–D485. doi:10.1093/nar/gkx1019. ISSN 0305-1048. PMC 5753216. PMID 29106550.