iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://wikipedia.org/wiki/List_of_set_classes
List of set classes - Wikipedia Jump to content

List of set classes

From Wikipedia, the free encyclopedia

Set 3-1 has three possible versions: [01112T], [011TE1], and [0TT1E1], where the subscripts indicate adjacency intervals. The normal form is the smallest "slice of pie" (shaded) or most compact form, in this case: [01112T].

This is a list of set classes, by Forte number.[1] A set class (an abbreviation of pitch-class-set class) in music theory is an ascending collection of pitch classes, transposed to begin at zero. For a list of ordered collections, see: list of tone rows and series.

Sets are listed with links to their complements. The prime form of unsymmetrical sets is marked "A". Inversions are marked "B" (sets not marked "A" or "B" are symmetrical). "T" and "E" are conventionally used in sets to notate ten and eleven, respectively, as single characters. The ordering of sets in the lists is based on the string of numerals in the interval vector treated as an integer, decreasing in value, following the strategy used by Forte in constructing his numbering system. Numbers marked with a "Z" refer to a pair of different set classes with identical interval class content that are not related by inversion, with one of each pair listed at the end of the respective list when they occur. [The "Z" derives from the prefix "zygo"—from the ancient Greek, meaning yoked or paired. Hence: zygosets.]

There are two slightly different methods of obtaining the prime form—an earlier one due to Allen Forte and a later (and generally now more popular) one devised by John Rahn—both often confusingly described as "most packed to the left". However, a more precise description of the Rahn spelling is to select the version that is most dispersed from the right. The precise description of the Forte spelling is to select the version that is most packed to the left within the smallest span. [a] This results in two different prime form sets for the same Forte number in a number of cases. The lists here use the Rahn spelling. The alternative notations for those set classes where the Forte spelling differs are listed in the footnotes.[3][4]

Elliott Carter had earlier (1960–67) produced a numbered listing of pitch class sets, or "chords", as Carter referred to them, for his own use.[5][6] Donald Martino had produced tables of hexachords, tetrachords, trichords, and pentachords for combinatoriality in his article, "The Source Set and its Aggregate Formations" (1961).[7]

The difference between the interval vector of a set and that of its complement is <X, X, X, X, X, X/2>, where (in base-ten) X = 12 – 2C, and C is the cardinality of the smaller set. In nearly all cases, complements of unsymmetrical sets are inversionally related—i.e. the complement of an "A" version of a set of cardinality C is (usually) the "B" version of the respective set of cardinality 12 – C. The most significant exceptions are the sets 4-14/8-14, 5-11/7-11, and 6-14, which are all closely related in terms of subset/superset structure.

List

[edit]
Forte no. Prime form Interval vector Carter no. Audio Possible spacings Complement
0-1 [] <0,0,0,0,0,0> empty set 12-1
1-1 [0] <0,0,0,0,0,0> Play PU, P8 11-1
2-1 [0,1] <1,0,0,0,0,0> 1 Play m2, M7 10-1
2-2 [0,2] <0,1,0,0,0,0> 2 Play M2, m7 10-2
2-3 [0,3] <0,0,1,0,0,0> 3 Play m3, M6 10-3
2-4 [0,4] <0,0,0,1,0,0> 4 Play M3, m6 10-4
2-5 [0,5] <0,0,0,0,1,0> 5 Play P4, P5 10-5
2-6 [0,6] <0,0,0,0,0,1> 6 Play A4, d5 10-6
3-1 [0,1,2] <2,1,0,0,0,0> 4 Play ... 9-1
3-2A [0,1,3] <1,1,1,0,0,0> 12 Play ... 9-2B
3-2B [0,2,3] Play ... 9-2A
3-3A [0,1,4] <1,0,1,1,0,0> 11 Play ... 9-3B
3-3B [0,3,4] Play ... 9-3A
3-4A [0,1,5] <1,0,0,1,1,0> 9 Play ... 9-4B
3-4B [0,4,5] Play ... 9-4A
3-5A [0,1,6] <1,0,0,0,1,1> 7 Play Viennese trichord 9-5B
3-5B [0,5,6] Play ... 9-5A
3-6 [0,2,4] <0,2,0,1,0,0> 3 Play ... 9-6
3-7A [0,2,5] <0,1,1,0,1,0> 10 Play ... 9-7B
3-7B [0,3,5] Play Blues trichord (min. pentatonic subset)[8] 9-7A
3-8A [0,2,6] <0,1,0,1,0,1> 8 Play It6 9-8B
3-8B [0,4,6] Play ... 9-8A
3-9 [0,2,7] <0,1,0,0,2,0> 5 Play sus. chord 9-9
3-10 [0,3,6] <0,0,2,0,0,1> 2 Play dim. chord 9-10
3-11A [0,3,7] <0,0,1,1,1,0> 6 Play minor chord 9-11B
3-11B [0,4,7] Play major chord 9-11A
3-12 [0,4,8] <0,0,0,3,0,0> 1 Play Aug. chord 9-12
4-1 [0,1,2,3] <3,2,1,0,0,0> 1 Play ... 8-1
4-2A [0,1,2,4] <2,2,1,1,0,0> 17 Play ... 8-2B
4-2B [0,2,3,4] Play ... 8-2A
4-3 [0,1,3,4] <2,1,2,1,0,0> 9 Play DSCH motif 8-3
4-4A [0,1,2,5] <2,1,1,1,1,0> 20 Play ... 8-4B
4-4B [0,3,4,5] Play ... 8-4A
4-5A [0,1,2,6] <2,1,0,1,1,1> 22 Play ... 8-5B
4-5B [0,4,5,6] Play ... 8-5A
4-6 [0,1,2,7] <2,1,0,0,2,1> 6 Play dream chord 8-6
4-7 [0,1,4,5] <2,0,1,2,1,0> 8 Play ... 8-7
4-8 [0,1,5,6] <2,0,0,1,2,1> 10 Play ... 8-8
4-9 [0,1,6,7] <2,0,0,0,2,2> 2 Play distance model 8-9
4-10 [0,2,3,5] <1,2,2,0,1,0> 3 Play ... 8-10
4-11A [0,1,3,5] <1,2,1,1,1,0> 26 Play ... 8-11B
4-11B [0,2,4,5] Play ... 8-11A
4-12A [0,2,3,6] <1,1,2,1,0,1> 28 Play ... 8-12A
4-12B [0,3,4,6] Play ... 8-12B
4-13A [0,1,3,6] <1,1,2,0,1,1> 7 Play ... 8-13B
4-13B [0,3,5,6] Play ... 8-13A
4-14A [0,2,3,7] <1,1,1,1,2,0> 25 Play ... 8-14A
4-14B [0,4,5,7] Play ... 8-14B
4-Z15A [0,1,4,6] <1,1,1,1,1,1> 18 Play all-interval tetrachord 8-Z15B
4-Z15B [0,2,5,6] Play all-interval tetrachord 8-Z15A
4-16A [0,1,5,7] <1,1,0,1,2,1> 19 Play ... 8-16B
4-16B [0,2,6,7] Play ... 8-16A
4-17 [0,3,4,7] <1,0,2,2,1,0> 13 Play alpha chord 8-17
4-18A [0,1,4,7] <1,0,2,1,1,1> 21 Play dim. M7 chord 8-18B
4-18B [0,3,6,7] Play ... 8-18A
4-19A [0,1,4,8] <1,0,1,3,1,0> 24 Play mM7 chord 8-19B
4-19B [0,3,4,8] Play ... 8-19A
4-20 [0,1,5,8] <1,0,1,2,2,0> 15 Play M7 chord 8-20
4-21 [0,2,4,6] <0,3,0,2,0,1> 11 Play ... 8-21
4-22A [0,2,4,7] <0,2,1,1,2,0> 27 Play mu chord 8-22B
4-22B [0,3,5,7] Play ... 8-22A
4-23 [0,2,5,7] <0,2,1,0,3,0> 4 Play quartal chord 8-23
4-24 [0,2,4,8] <0,2,0,3,0,1> 16 Play A7 chord 8-24
4-25 [0,2,6,8] <0,2,0,2,0,2> 12 Play Fr6 8-25
4-26 [0,3,5,8] <0,1,2,1,2,0> 14 Play minor seventh chord 8-26
4-27A [0,2,5,8] <0,1,2,1,1,1> 29 Play Half-diminished seventh chord 8-27B
4-27B [0,3,6,8] Play dominant 7th chord 8-27A
4-28 [0,3,6,9] <0,0,4,0,0,2> 5 Play dim. 7th chord 8-28
4-Z29A [0,1,3,7] <1,1,1,1,1,1> 23 Play all-interval tetrachord 8-Z29B
4-Z29B [0,4,6,7] Play all-interval tetrachord 8-Z29A
5-1 [0,1,2,3,4] <4,3,2,1,0,0> Play ... 7-1
5-2A [0,1,2,3,5] <3,3,2,1,1,0> Play ... 7-2B
5-2B [0,2,3,4,5] Play ... 7-2A
5-3A [0,1,2,4,5] <3,2,2,2,1,0> Play ... 7-3B
5-3B [0,1,3,4,5] Play ... 7-3A
5-4A [0,1,2,3,6] <3,2,2,1,1,1> Play ... 7-4B
5-4B [0,3,4,5,6] Play ... 7-4A
5-5A [0,1,2,3,7] <3,2,1,1,2,1> Play ... 7-5B
5-5B [0,4,5,6,7] Play ... 7-5A
5-6A [0,1,2,5,6] <3,1,1,2,2,1> Play ... 7-6B
5-6B [0,1,4,5,6] Play ... 7-6A
5-7A [0,1,2,6,7] <3,1,0,1,3,2> Play ... 7-7B
5-7B [0,1,5,6,7] Play ... 7-7A
5-8 [0,2,3,4,6] <2,3,2,2,0,1> Play ... 7-8
5-9A [0,1,2,4,6] <2,3,1,2,1,1> Play ... 7-9B
5-9B [0,2,4,5,6] Play ... 7-9A
5-10A [0,1,3,4,6] <2,2,3,1,1,1> Play ... 7-10B
5-10B [0,2,3,5,6] Play ... 7-10A
5-11A [0,2,3,4,7] <2,2,2,2,2,0> Play ... 7-11A
5-11B [0,3,4,5,7] Play ... 7-11B
5-Z12 [0,1,3,5,6] <2,2,2,1,2,1> Play ... 7-Z12
5-13A [0,1,2,4,8] <2,2,1,3,1,1> Play ... 7-13B
5-13B [0,2,3,4,8] Play ... 7-13A
5-14A [0,1,2,5,7] <2,2,1,1,3,1> Play ... 7-14B
5-14B [0,2,5,6,7] Play ... 7-14A
5-15 [0,1,2,6,8] <2,2,0,2,2,2> Play ... 7-15
5-16A [0,1,3,4,7] <2,1,3,2,1,1> Play ... 7-16B
5-16B [0,3,4,6,7] Play ... 7-16A
5-Z17 [0,1,3,4,8] <2,1,2,3,2,0> Play Farben chord 7-Z17
5-Z18A [0,1,4,5,7] <2,1,2,2,2,1> Play ... 7-Z18B
5-Z18B [0,2,3,6,7] Play ... 7-Z18A
5-19A [0,1,3,6,7] <2,1,2,1,2,2> Play ... 7-19B
5-19B [0,1,4,6,7] Play ... 7-19A
5-20A [0,1,5,6,8][b] <2,1,1,2,3,1> Play ... 7-20B
5-20B [0,2,3,7,8][c] Play In scale 7-20A
5-21A [0,1,4,5,8] <2,0,2,4,2,0> Play ... 7-21B
5-21B [0,3,4,7,8] Play ... 7-21A
5-22 [0,1,4,7,8] <2,0,2,3,2,1> Play ... 7-22
5-23A [0,2,3,5,7] <1,3,2,1,3,0> Play ... 7-23B
5-23B [0,2,4,5,7] Play ... 7-23A
5-24A [0,1,3,5,7] <1,3,1,2,2,1> Play ... 7-24B
5-24B [0,2,4,6,7] Play ... 7-24A
5-25A [0,2,3,5,8] <1,2,3,1,2,1> Play Seven six chord 7-25B
5-25B [0,3,5,6,8] Play ... 7-25A
5-26A [0,2,4,5,8] <1,2,2,3,1,1> Play ... 7-26A
5-26B [0,3,4,6,8] Play ... 7-26B
5-27A [0,1,3,5,8] <1,2,2,2,3,0> Play ... 7-27B
5-27B [0,3,5,7,8] Play ... 7-27A
5-28A [0,2,3,6,8] <1,2,2,2,1,2> Play ... 7-28A
5-28B [0,2,5,6,8] Play ... 7-28B
5-29A [0,1,3,6,8] <1,2,2,1,3,1> Play ... 7-29B
5-29B [0,2,5,7,8] Play ... 7-29A
5-30A [0,1,4,6,8] <1,2,1,3,2,1> Play ... 7-30B
5-30B [0,2,4,7,8] Play ... 7-30A
5-31A [0,1,3,6,9] <1,1,4,1,1,2> Play beta chord 7-31B
5-31B [0,2,3,6,9] Play Dominant minor ninth chord 7-31A
5-32A [0,1,4,6,9] <1,1,3,2,2,1> Play ... 7-32B
5-32B [0,2,5,6,9][d] Play Elektra chord, gamma chord 7-32A
5-33 [0,2,4,6,8] <0,4,0,4,0,2> Play ... 7-33
5-34 [0,2,4,6,9] <0,3,2,2,2,1> Play Dominant ninth chord 7-34
5-35 [0,2,4,7,9] <0,3,2,1,4,0> Play M pentatonic scale 7-35
5-Z36A [0,1,2,4,7] <2,2,2,1,2,1> Play ... 7-Z36B
5-Z36B [0,3,5,6,7] Play ... 7-Z36A
5-Z37 [0,3,4,5,8] <2,1,2,3,2,0> Play ... 7-Z37
5-Z38A [0,1,2,5,8] <2,1,2,2,2,1> Play ... 7-Z38B
5-Z38B [0,3,6,7,8] Play ... 7-Z38A
6-1 [0,1,2,3,4,5] <5,4,3,2,1,0> 4 Play chromatic hexachord 6-1
6-2A [0,1,2,3,4,6] <4,4,3,2,1,1> 19 Play ... 6-2B
6-2B [0,2,3,4,5,6] Play ... 6-2A
6-Z3A [0,1,2,3,5,6] <4,3,3,2,2,1> 49 Play ... 6-Z36B
6-Z3B [0,1,3,4,5,6] Play ... 6-Z36A
6-Z4 [0,1,2,4,5,6] <4,3,2,3,2,1> 24 Play ... 6-Z37
6-5A [0,1,2,3,6,7] <4,2,2,2,3,2> 16 Play ... 6-5B
6-5B [0,1,4,5,6,7] Play ... 6-5A
6-Z6 [0,1,2,5,6,7] <4,2,1,2,4,2> 33 Play ... 6-Z38
6-7 [0,1,2,6,7,8] <4,2,0,2,4,3> 7 Play ... 6-7
6-8 [0,2,3,4,5,7] <3,4,3,2,3,0> 5 Play ... 6-8
6-9A [0,1,2,3,5,7] <3,4,2,2,3,1> 20 Play ... 6-9B
6-9B [0,2,4,5,6,7] Play ... 6-9A
6-Z10A [0,1,3,4,5,7] <3,3,3,3,2,1> 42 Play ... 6-Z39A
6-Z10B [0,2,3,4,6,7] Play ... 6-Z39B
6-Z11A [0,1,2,4,5,7] <3,3,3,2,3,1> 47 Play ... 6-Z40B
6-Z11B [0,2,3,5,6,7] Play Sacher hexachord 6-Z40A
6-Z12A [0,1,2,4,6,7] <3,3,2,2,3,2> 46 Play ... 6-Z41B
6-Z12B [0,1,3,5,6,7] Play ... 6-Z41A
6-Z13 [0,1,3,4,6,7] <3,2,4,2,2,2> 29 Play ... 6-Z42
6-14A [0,1,3,4,5,8] <3,2,3,4,3,0> 3 Play ... 6-14A
6-14B [0,3,4,5,7,8] Play ... 6-14B
6-15A [0,1,2,4,5,8] <3,2,3,4,2,1> 13 Play ... 6-15B
6-15B [0,3,4,6,7,8] Play ... 6-15A
6-16A [0,1,4,5,6,8] <3,2,2,4,3,1> 11 Play ... 6-16B
6-16B [0,2,3,4,7,8] Play ... 6-16A
6-Z17A [0,1,2,4,7,8] <3,2,2,3,3,2> 35 Play all-trichord hexachord 6-Z43B
6-Z17B [0,1,4,6,7,8] Play ... 6-Z43A
6-18A [0,1,2,5,7,8] <3,2,2,2,4,2> 17 Play ... 6-18B
6-18B [0,1,3,6,7,8] Play ... 6-18A
6-Z19A [0,1,3,4,7,8] <3,1,3,4,3,1> 37 Play ... 6-Z44B
6-Z19B [0,1,4,5,7,8] Play ... 6-Z44A
6-20 [0,1,4,5,8,9] <3,0,3,6,3,0> 2 Play "Ode-to-Napoleon" hexachord 6-20
6-21A [0,2,3,4,6,8] <2,4,2,4,1,2> 12 Play ... 6-21B
6-21B [0,2,4,5,6,8] Play ... 6-21A
6-22A [0,1,2,4,6,8] <2,4,1,4,2,2> 10 Play ... 6-22B
6-22B [0,2,4,6,7,8] Play ... 6-21A
6-Z23 [0,2,3,5,6,8] <2,3,4,2,2,2> 27 Play ... 6-Z45
6-Z24A [0,1,3,4,6,8] <2,3,3,3,3,1> 39 Play ... 6-Z46B
6-Z24B [0,2,4,5,7,8] Play ... 6-Z46A
6-Z25A [0,1,3,5,6,8] <2,3,3,2,4,1> 43 Play Major eleventh chord 6-Z47B
6-Z25B [0,2,3,5,7,8] Play ... 6-Z47A
6-Z26 [0,1,3,5,7,8] <2,3,2,3,4,1> 26 Play ... 6-Z48
6-27A [0,1,3,4,6,9] <2,2,5,2,2,2> 14 Play ... 6-27B
6-27B [0,2,3,5,6,9] Play ... 6-27A
6-Z28 [0,1,3,5,6,9] <2,2,4,3,2,2> 21 Play ... 6-Z49
6-Z29 [0,2,3,6,7,9][e] <2,2,4,2,3,2> 32 Play Bridge chord 6-Z50
6-30A [0,1,3,6,7,9] <2,2,4,2,2,3> 15 Play ... 6-30B
6-30B [0,2,3,6,8,9] Play Petrushka chord 6-30A
6-31A [0,1,4,5,7,9][f] <2,2,3,4,3,1> 8 Play ... 6-31B
6-31B [0,2,4,5,8,9][g] Play ... 6-31A
6-32 [0,2,4,5,7,9] <1,4,3,2,5,0> 6 Play diatonic hexachord 6-32
6-33A [0,2,3,5,7,9] <1,4,3,2,4,1> 18 Play ... 6-33B
6-33B [0,2,4,6,7,9] Play Dominant eleventh chord 6-33A
6-34A [0,1,3,5,7,9] <1,4,2,4,2,2> 9 Play mystic chord 6-34B
6-34B [0,2,4,6,8,9] Play Prélude chord 6-34A
6-35 [0,2,4,6,8,T] <0,6,0,6,0,3> 1 Play whole tone scale 6-35
6-Z36A [0,1,2,3,4,7] <4,3,3,2,2,1> 50 Play ... 6-Z3B
6-Z36B [0,3,4,5,6,7] Play ... 6-Z3A
6-Z37 [0,1,2,3,4,8] <4,3,2,3,2,1> 23 Play ... 6-Z4
6-Z38 [0,1,2,3,7,8] <4,2,1,2,4,2> 34 Play ... 6-Z6
6-Z39A [0,2,3,4,5,8] <3,3,3,3,2,1> 41 Play ... 6-Z10A
6-Z39B [0,3,4,5,6,8] Play ... 6-Z10B
6-Z40A [0,1,2,3,5,8] <3,3,3,2,3,1> 48 Play ... 6-Z11B
6-Z40B [0,3,5,6,7,8] Play ... 6-Z11A
6-Z41A [0,1,2,3,6,8] <3,3,2,2,3,2> 45 Play ... 6-Z12B
6-Z41B [0,2,5,6,7,8] Play ... 6-Z12A
6-Z42 [0,1,2,3,6,9] <3,2,4,2,2,2> 30 Play ... 6-Z13
6-Z43A [0,1,2,5,6,8] <3,2,2,3,3,2> 36 Play ... 6-Z17B
6-Z43B [0,2,3,6,7,8] Play ... 6-Z17A
6-Z44A [0,1,2,5,6,9] <3,1,3,4,3,1> 38 Play Schoenberg hexachord 6-Z19B
6-Z44B [0,1,4,5,6,9][h] Play ... 6-Z19A
6-Z45 [0,2,3,4,6,9] <2,3,4,2,2,2> 28 Play ... 6-Z23
6-Z46A [0,1,2,4,6,9] <2,3,3,3,3,1> 40 Play ... 6-Z24B
6-Z46B [0,2,4,5,6,9] Play ... 6-Z24A
6-Z47A [0,1,2,4,7,9] <2,3,3,2,4,1> 44 Play ... 6-Z25B
6-Z47B [0,2,3,4,7,9] Play blues scale 6-Z25A
6-Z48 [0,1,2,5,7,9] <2,3,2,3,4,1> 25 Play ... 6-Z26
6-Z49 [0,1,3,4,7,9] <2,2,4,3,2,2> 22 Play ... 6-Z28
6-Z50 [0,1,4,6,7,9] <2,2,4,2,3,2> 31 Play ... 6-Z29
7-1 [0,1,2,3,4,5,6] <6,5,4,3,2,1> 1 Play ... 5-1
7-2A [0,1,2,3,4,5,7] <5,5,4,3,3,1> 11 Play ... 5-2B
7-2B [0,2,3,4,5,6,7] Play ... 5-2A
7-3A [0,1,2,3,4,5,8] <5,4,4,4,3,1> 14 Play ... 5-3B
7-3B [0,3,4,5,6,7,8] Play ... 5-3A
7-4A [0,1,2,3,4,6,7] <5,4,4,3,3,2> 12 Play ... 5-4B
7-4B [0,1,3,4,5,6,7] Play ... 5-4A
7-5A [0,1,2,3,5,6,7] <5,4,3,3,4,2> 13 Play ... 5-5B
7-5B [0,1,2,4,5,6,7] Play ... 5-5A
7-6A [0,1,2,3,4,7,8] <5,3,3,4,4,2> 27 Play ... 5-6B
7-6B [0,1,4,5,6,7,8] Play ... 5-6A
7-7A [0,1,2,3,6,7,8] <5,3,2,3,5,3> 30 Play ... 5-7B
7-7B [0,1,2,5,6,7,8] Play ... 5-7A
7-8 [0,2,3,4,5,6,8] <4,5,4,4,2,2> 2 Play ... 5-8
7-9A [0,1,2,3,4,6,8] <4,5,3,4,3,2> 15 Play ... 5-9B
7-9B [0,2,4,5,6,7,8] Play ... 5-9A
7-10A [0,1,2,3,4,6,9] <4,4,5,3,3,2> 19 Play ... 5-10B
7-10B [0,2,3,4,5,6,9] Play ... 5-10A
7-11A [0,1,3,4,5,6,8] <4,4,4,4,4,1> 18 Play ... 5-11A
7-11B [0,2,3,4,5,7,8] Play ... 5-11B
7-Z12 [0,1,2,3,4,7,9] <4,4,4,3,4,2> 5 Play ... 5-Z12
7-13A [0,1,2,4,5,6,8] <4,4,3,5,3,2> 17 Play ... 5-13B
7-13B [0,2,3,4,6,7,8] Play ... 5-13A
7-14A [0,1,2,3,5,7,8] <4,4,3,3,5,2> 28 Play ... 5-14B
7-14B [0,1,3,5,6,7,8] Play ... 5-14A
7-15 [0,1,2,4,6,7,8] <4,4,2,4,4,3> 4 Play ... 5-15
7-16A [0,1,2,3,5,6,9] <4,3,5,4,3,2> 20 Play ... 5-16B
7-16B [0,1,3,4,5,6,9] Play ... 5-16A
7-Z17 [0,1,2,4,5,6,9] <4,3,4,5,4,1> 10 Play ... 5-Z17
7-Z18A [0,1,4,5,6,7,9][i] <4,3,4,4,4,2> 35 Play ... 5-Z18B
7-Z18B [0,2,3,4,5,8,9] [j] Play ... 5-Z18A
7-19A [0,1,2,3,6,7,9] <4,3,4,3,4,3> 31 Play ... 5-19B
7-19B [0,1,2,3,6,8,9] Play ... 5-19A
7-20A [0,1,2,5,6,7,9][k] <4,3,3,4,5,2> 34 Play Persian scale 5-20B
7-20B [0,2,3,4,7,8,9][l] Play ... 5-20A
7-21A [0,1,2,4,5,8,9] <4,2,4,6,4,1> 21 Play ... 5-21B
7-21B [0,1,3,4,5,8,9] Play ... 5-21A
7-22 [0,1,2,5,6,8,9] <4,2,4,5,4,2> 8 Play double harmonic scale 5-22
7-23A [0,2,3,4,5,7,9] <3,5,4,3,5,1> 25 Play ... 5-23B
7-23B [0,2,4,5,6,7,9] Play ... 5-23A
7-24A [0,1,2,3,5,7,9] <3,5,3,4,4,2> 22 Play ... 5-24B
7-24B [0,2,4,6,7,8,9] Play enigmatic scale 5-24A
7-25A [0,2,3,4,6,7,9] <3,4,5,3,4,2> 24 Play ... 5-25B
7-25B [0,2,3,5,6,7,9] Play ... 5-25A
7-26A [0,1,3,4,5,7,9] <3,4,4,5,3,2> 26 Play ... 5-26A
7-26B [0,2,4,5,6,8,9] Play ... 5-26B
7-27A [0,1,2,4,5,7,9] <3,4,4,4,5,1> 23 Play ... 5-27B
7-27B [0,2,4,5,7,8,9] Play ... 5-27A
7-28A [0,1,3,5,6,7,9] <3,4,4,4,3,3> 36 Play ... 5-28A
7-28B [0,2,3,4,6,8,9] Play ... 5-28B
7-29A [0,1,2,4,6,7,9] <3,4,4,3,5,2> 32 Play ... 5-29B
7-29B [0,2,3,5,7,8,9] Play ... 5-29A
7-30A [0,1,2,4,6,8,9] <3,4,3,5,4,2> 37 Play minor Neapolitan scale 5-30B
7-30B [0,1,3,5,7,8,9] Play ... 5-30A
7-31A [0,1,3,4,6,7,9] <3,3,6,3,3,3> 38 Play Hungarian major scale 5-31B
7-31B [0,2,3,5,6,8,9] Play Romanian major scale 5-31A
7-32A [0,1,3,4,6,8,9] <3,3,5,4,4,2> 33 Play harmonic minor scale 5-32B
7-32B [0,1,3,5,6,8,9] Play harmonic major scale 5-32A
7-33 [0,1,2,4,6,8,T] <2,6,2,6,2,3> 6 Play M Locrian scale 5-33
7-34 [0,1,3,4,6,8,T] <2,5,4,4,4,2> 9 Play altered scale 5-34
7-35 [0,1,3,5,6,8,T] <2,5,4,3,6,1> 7 Play diatonic scale 5-35
7-Z36A [0,1,2,3,5,6,8] <4,4,4,3,4,2> 16 Play ... 5-Z36B
7-Z36B [0,2,3,5,6,7,8] Play ... 5-Z36A
7-Z37 [0,1,3,4,5,7,8] <4,3,4,5,4,1> 3 Play ... 5-Z37
7-Z38A [0,1,2,4,5,7,8] <4,3,4,4,4,2> 29 Play ... 5-Z38B
7-Z38B [0,1,3,4,6,7,8] Play ... 5-Z38A
8-1 [0,1,2,3,4,5,6,7] <7,6,5,4,4,2> Play ... 4-1
8-2A [0,1,2,3,4,5,6,8] <6,6,5,5,4,2> Play ... 4-2B
8-2B [0,2,3,4,5,6,7,8] Play ... 4-2A
8-3 [0,1,2,3,4,5,6,9] <6,5,6,5,4,2> Play ... 4-3
8-4A [0,1,2,3,4,5,7,8] <6,5,5,5,5,2> Play ... 4-4B
8-4B [0,1,3,4,5,6,7,8] Play ... 4-4A
8-5A [0,1,2,3,4,6,7,8] <6,5,4,5,5,3> Play ... 4-5B
8-5B [0,1,2,4,5,6,7,8] Play ... 4-5A
8-6 [0,1,2,3,5,6,7,8] <6,5,4,4,6,3> Play ... 4-6
8-7 [0,1,2,3,4,5,8,9] <6,4,5,6,5,2> Play ... 4-7
8-8 [0,1,2,3,4,7,8,9] <6,4,4,5,6,3> Play ... 4-8
8-9 [0,1,2,3,6,7,8,9] <6,4,4,4,6,4> Play ... 4-9
8-10 [0,2,3,4,5,6,7,9] <5,6,6,4,5,2> Play ... 4-10
8-11A [0,1,2,3,4,5,7,9] <5,6,5,5,5,2> Play ... 4-11B
8-11B [0,2,4,5,6,7,8,9] Play ... 4-11A
8-12A [0,1,3,4,5,6,7,9] <5,5,6,5,4,3> Play ... 4-12A
8-12B [0,2,3,4,5,6,8,9] Play ... 4-12B
8-13A [0,1,2,3,4,6,7,9] <5,5,6,4,5,3> Play ... 4-13B
8-13B [0,2,3,5,6,7,8,9] Play ... 4-13A
8-14A [0,1,2,4,5,6,7,9] <5,5,5,5,6,2> Play ... 4-14A
8-14B [0,2,3,4,5,7,8,9] Play ... 4-14B
8-Z15A [0,1,2,3,4,6,8,9] <5,5,5,5,5,3> Play ... 4-Z15B
8-Z15B [0,1,3,5,6,7,8,9] Play ... 4-Z15A
8-16A [0,1,2,3,5,7,8,9] <5,5,4,5,6,3> Play ... 4-16B
8-16B [0,1,2,4,6,7,8,9] Play ... 4-16A
8-17 [0,1,3,4,5,6,8,9] <5,4,6,6,5,2> Play ... 4-17
8-18A [0,1,2,3,5,6,8,9] <5,4,6,5,5,3> Play ... 4-18B
8-18B [0,1,3,4,6,7,8,9] Play ... 4-18A
8-19A [0,1,2,4,5,6,8,9] <5,4,5,7,5,2> Play ... 4-19B
8-19B [0,1,3,4,5,7,8,9] Play ... 4-19A
8-20 [0,1,2,4,5,7,8,9] <5,4,5,6,6,2> Play ... 4-20
8-21 [0,1,2,3,4,6,8,T] <4,7,4,6,4,3> Play ... 4-21
8-22A [0,1,2,3,5,6,8,T] <4,6,5,5,6,2> Play ... 4-22B
8-22B [0,1,3,4,5,6,8,T] [m] Play ... 4-22A
8-23 [0,1,2,3,5,7,8,T] <4,6,5,4,7,2> Play bebop scale 4-23
8-24 [0,1,2,4,5,6,8,T] <4,6,4,7,4,3> Play ... 4-24
8-25 [0,1,2,4,6,7,8,T] <4,6,4,6,4,4> Play ... 4-25
8-26 [0,1,3,4,5,7,8,T][n] <4,5,6,5,6,2> Play ... 4-26
8-27A [0,1,2,4,5,7,8,T] <4,5,6,5,5,3> Play ... 4-27B
8-27B [0,1,3,4,6,7,8,T] [o] Play ... 4-27A
8-28 [0,1,3,4,6,7,9,T] <4,4,8,4,4,4> Play octatonic scale 4-28
8-Z29A [0,1,2,3,5,6,7,9] <5,5,5,5,5,3> Play ... 4-Z29B
8-Z29B [0,2,3,4,6,7,8,9] Play ... 4-Z29A
9-1 [0,1,2,3,4,5,6,7,8] <8,7,6,6,6,3> Play ... 3-1
9-2A [0,1,2,3,4,5,6,7,9] <7,7,7,6,6,3> Play ... 3-2B
9-2B [0,2,3,4,5,6,7,8,9] Play ... 3-2A
9-3A [0,1,2,3,4,5,6,8,9] <7,6,7,7,6,3> Play ... 3-3B
9-3B [0,1,3,4,5,6,7,8,9] Play ... 3-3A
9-4A [0,1,2,3,4,5,7,8,9] <7,6,6,7,7,3> Play ... 3-4B
9-4B [0,1,2,4,5,6,7,8,9] Play ... 3-4A
9-5A [0,1,2,3,4,6,7,8,9] <7,6,6,6,7,4> Play ... 3-5B
9-5B [0,1,2,3,5,6,7,8,9] Play ... 3-5A
9-6 [0,1,2,3,4,5,6,8,T] <6,8,6,7,6,3> Play ... 3-6
9-7A [0,1,2,3,4,5,7,8,T] <6,7,7,6,7,3> Play ... 3-7B
9-7B [0,1,3,4,5,6,7,8,T] [p] Play ... 3-7A
9-8A [0,1,2,3,4,6,7,8,T] <6,7,6,7,6,4> Play ... 3-8B
9-8B [0,1,2,4,5,6,7,8,T] [q] Play ... 3-8A
9-9 [0,1,2,3,5,6,7,8,T] <6,7,6,6,8,3> Play blues scale 3-9
9-10 [0,1,2,3,4,6,7,9,T] <6,6,8,6,6,4> Play ... 3-10
9-11A [0,1,2,3,5,6,7,9,T] <6,6,7,7,7,3> Play ... 3-11B
9-11B [0,1,2,4,5,6,7,9,T] [r] Play ... 3-11A
9-12 [0,1,2,4,5,6,8,9,T] <6,6,6,9,6,3> Play ... 3-12
10-1 [0,1,2,3,4,5,6,7,8,9] <9,8,8,8,8,4> Play ... 2-1
10-2 [0,1,2,3,4,5,6,7,8,T] <8,9,8,8,8,4> Play ... 2-2
10-3 [0,1,2,3,4,5,6,7,9,T] <8,8,9,8,8,4> Play ... 2-3
10-4 [0,1,2,3,4,5,6,8,9,T] <8,8,8,9,8,4> Play ... 2-4
10-5 [0,1,2,3,4,5,7,8,9,T] <8,8,8,8,9,4> Play ... 2-5
10-6 [0,1,2,3,4,6,7,8,9,T] <8,8,8,8,8,5> Play ... 2-6
11-1 [0,1,2,3,4,5,6,7,8,9,T] <T,T,T,T,T,5> Play ... 1-1
12-1 [0,1,2,3,4,5,6,7,8,9,T,E] <C,C,C,C,C,6> Play aggregate 0-1

There is an anomaly in Allen Forte's book concerning the numbering of the pair of hexachords 6-Z28, [011232516393], and 6-Z49, [011231437293], where adjacency intervals are shown here by subscripts. They both have the same span, with a minor-third at the right. But, within that span, the hexachord [0,1,3,4,7,9] is "more packed to the left" than [0,1,3,5,6,9], as seen by inspecting the left-hand adjacency-interval sequences, and therefore, according to Forte's own rule, the set [0,1,3,4,7,9] should have been assigned the lower number 6-Z28, with [0,1,3,5,6,9] given the higher number 6-Z49.

See also

[edit]

References

[edit]

Notes

[edit]
  1. ^ Forte and Rahn both list prime forms as the most left-packed possible version of a set. However, Forte packs from the left and Rahn packs from the right ("making the small numbers smaller," versus making, "the larger numbers ... smaller"[2]).
  2. ^ Forte 5-20A: [0,1,3,7,8]
  3. ^ Forte 5-20B: [0,1,5,7,8]
  4. ^ Forte 5-32B: [0,1,4,7,9]
  5. ^ Forte 6-Z29: [0,1,3,6,8,9]
  6. ^ Forte 6-31A: [0,1,3,5,8,9]
  7. ^ Forte 6-31B: [0,1,4,6,8,9]
  8. ^ Forte 6-Z44B: [0,1,2,5,8,9]
  9. ^ Forte 7-Z18A: [0,1,2,3,5,8,9]
  10. ^ Forte 7-Z18B: [0,1,4,6,7,8,9]
  11. ^ Forte 7-20A: [0,1,2,4,7,8,9]
  12. ^ Forte 7-20B: [0,1,2,5,7,8,9]
  13. ^ Forte 8-22B: [0,1,2,3,5,7,9,T]
  14. ^ Forte 8-26: [0,1,2,4,5,7,9,T]
  15. ^ Forte 8-27B: [0,1,2,4,6,7,9,T]
  16. ^ Forte 9-7B: [0,1,2,3,4,5,7,9,T]
  17. ^ Forte 9-8B: [0,1,2,3,4,6,8,9,T]
  18. ^ Forte 9-11B: [0,1,2,3,5,6,8,9,T]

Sources

[edit]
  1. ^ Forte, Allen (1973). The Structure of Atonal Music. Yale University Press. ISBN 0-300-02120-8.
  2. ^ Nelson, Paul (2004). "Two Algorithms for Computing the Prime Form", ComposerTools.com.
  3. ^ Rahn, John (1980). Basic Atonal Theory. New York: Longman. ISBN 978-0028731605.
  4. ^ Straus, Joseph N. (1990). Introduction to Post-Tonal Theory. Prentice-Hall. ISBN 9780131898905.
  5. ^ Schiff, David (1983/1998). The Music of Elliott Carter.
  6. ^ Carter, Elliott (2002). The Harmony Book, "Appendix 1". ISBN 9780825845949.
  7. ^ Schuijer, Michael (2008). Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts, p.97. University of Rochester. ISBN 978-1-58046-270-9.
  8. ^ Everett, Walter (2008). The Foundations of Rock, p.169. Oxford. ISBN 9780199718702.
[edit]

Online lists