Chapter
Today’s environmental crises upend yesterday’s assumptions, establishing a new paradigm captured in the 2016 Environmental Performance Index (EPI). A nation’s environment is not its own but is shared with its neighbors and the rest of the world. Pollution is not one country’s problem – everyone bears its burden. Local actions lead to global environmental change and national policies have effects beyond state borders. Short-term decisions often produce permanent results. Environmental health is not merely a consideration for some people, but is central to human well-being. The 2016 EPI indicators depict these realities, reflecting global synergies among environmental issues as well as areas where the world’s nations show little improvement or, worse, are regressing.
Introduction

As nations become wealthier, their governments invest in infrastructure that generally lead to improved public health. And yet we also witness a phase of development that coincides with environmental degradation and destruction. Global environmental statistics reflect this tension. More people today have access to clean drinking water than ever before, meaning fewer people get sick and die from waterborne illnesses such as dysentery. Meanwhile we see the opposite trend for air quality; rapid industrialization and urbanization has resulted, in much of the world, in badly polluted air. Human health metrics confirm the toxic air’s pernicious effects; in China, for instance, one in five deaths are attributed to air pollution.[footnote 1]

Expanding economies and urbanization have also produced conflicting signals in biodiversity and habitat loss. The world’s nations have designated more and larger areas of protected land and sea than ever, yet wildlife populations are declining at an alarming rate. The causes are complex and poorly understood. Climate change and human exploitation of animals contribute to biodiversity decline, yet the task of measuring these dynamic agents and their cumulative effect is largely unmet.

A dearth of data confounds efforts to assess environmental quality in other domains, like the world’s fisheries, for which reliable information is often unavailable. Illegal fishing, under-reported catches, and data irregularities make it difficult to measure the status of marine fish stocks. Fisheries science, however, has improved steadily, outpacing political responses for marine protection, and the science paints a grim picture of fish population decline in all the world’s oceans. While insufficient and unreliable data undermine fisheries policy, agricultural sustainability lacks an agreed-upon foundational concept, an essential requirement of evaluation. Agriculture is a vast and diverse sector, impossible to capture in a single metric, and best agricultural practices vary widely according to geographical context. Despite these obstacles to assessment, there are promising signs that the world’s governing bodies have awoken to the importance of measurement in developing equitable and sustainable societies.

Global Policy Developments Warrant New Measurement

Effective environmental solutions are global endeavors, commensurate with the problems they address. This year marks a new era of cooperation and partnership for international environmental policy. The Sustainable Development Goals (SDGs) and Paris Climate Change Agreement establish new models of action for tackling global environmental degradation and climate change. These policy frameworks recognize that all countries are part of the solution and national governments are one group – but not the only – who must lead the way.

Building on the expired Millennium Development Goals (MDGs), which aimed to eradicate extreme poverty, the SDGs articulate 17 goals that apply to all countries. One hundred indicators are now under consideration to measure social, economic, and environmental dimensions of sustainable development across the goals. The Paris Climate Change Agreement, negotiated in December 2015, sets an ambitious plan to reduce global greenhouse gas emissions. 196 countries have signed onto the new agreement, and all have agreed to take action on climate change in line with respective capacities.

Measuring and monitoring progress towards the SDGs and Paris Agreement pledges will be critical to maintaining international cooperation to address global environmental challenges. With 10 comprehensive reports and 15 years experience, the EPI provides a baseline analysis to inform national-level metrics that gauge progress towards global environmental goals, providing snapshots of environmental quality at global and national scales.

The EPI continuously adapts to global events, emerging technologies, and political developments to stay relevant in a changing international policy landscape. Incorporating the latest research and data, the 2016 Index includes new metrics to better capture environmental performance at the country level. Non-state actors, including cities, businesses, states, and regions, are vital yet undervalued entities for solving environmental challenges. For the next generation of environmental policy monitoring, metrics that capture environmental policy performance on priority issues at many levels of governance will be critical.

What is the EPI?  

The Environmental Performance Index (EPI) ranks countries’ performance on high-priority environmental issues in two areas: protection of human health and protection of ecosystems. Within these two policy objectives the EPI scores country performance in nine issue areas comprised of 20 indicators (see EPI Framework). Indicators in the EPI assess countries’ proximity to internationally established targets or, in the absence of agreed-upon targets, how individual nations compare relative to the best performing countries.

The EPI gives decision makers access to environmental data organized in ways that are easy to understand and relevant to policy, with the intention of encouraging nations to compete over advancing policies for the public good. The Index allows countries to compare their performance to neighbors and peers and, through the analysis of time series data, see how their own performance has changed over time.

Demand for robust, authoritative indicators of environmental performance is extremely high, and comes from all quarters of government, research, and activism.

This demand is driven by:

  • a widespread recognition of the benefits of data-driven decision making;
  • ongoing pressure on governments to invest limited resources as wisely as possible;
  • growing concern over the dangers posed by poorly managed environmental risks;
  • widespread commitment to making sustainability a central operating principle of the international development agenda; and
  • rapid diffusion of sustainability strategies in the corporate sector.
New Developments

The 2016 EPI introduces a host of innovations and improvements:

A Suite of Environmental Health Risk Measures. In partnership with the Institute for Health Metrics and Evaluation (IHME), we introduce a set of indicators that assess the environmental health risks associated with exposure to poor air and water quality. This measure replaces the Child Mortality indicator used in earlier EPIs, which is a proxy for assessing environmental pollution’s impacts on human health. Child mortality is often tied to malnutrition and health care infrastructure - two factors distinct from, yet not entirely unrelated, to environmental pressures (see Box 1: Shifting from Child Mortality to a Broader Environmental Health Measure).

Agriculture. Following a year-long research endeavor, the 2016 EPI introduces new indicators that measure the efficiency and environmental impact of countries’ agricultural practices. In step with SDG-2’s emphasis on promoting sustainable agriculture, the 2016 EPI agriculture indicators assess the efficiency of fertilizer application and excesses that create environmental hazards, including soil contamination and water pollution. This change improves on earlier proxy measures for environmental pressures attributable to agricultural subsidies and for national legislation regarding the use of Persistent Organic Pollutants (POPs) chemicals defined by the Stockholm Convention.

Air Quality. Partnering with Dalhousie University, the 2016 EPI includes a new air quality indicator for nitrogen dioxide (NO2). NO2 emissions from fossil fuel combustion is hazardous to human health because of the compound’s propensity to react with other chemicals, including Volatile Organic Compounds (VOCs), and produce ozone, fine particulate matter (PM2.5), and smog. Ground-level ozone and smog cause a range of insidious human health effects, including respiratory illnesses and heart and lung disease. Some governments directly monitor NO2, but measurement is not universal. Satellite data fill the gaps, providing critical insight into ground-level exposures to NO2.  

Biodiversity and Habitat. Collaborating with the Map of Life - a global biodiversity database based at Yale University - the 2016 EPI introduces new Species Protection indicators that assess whether protected areas align with species’ actual habitats. The new species protection indicators, paired with our Terrestrial and Marine Protected Areas indicators, provide a deeper understanding of nations’ effectiveness in conserving habitats and protecting species.

Fisheries. Incomplete and poor quality data regarding international and nationally-reported fisheries led Sea Around Us – a fisheries research institute based at the University of British Columbia – to reconstruct and correct country fish catch datasets. This multi-year process has led to improved fish catch data from 1950 to 2010, although data validation is still ongoing. These reconstructed datasets hold the promise of more accurate fish catch data, yet the 2016 EPI incorporates a penalty based on expert-evaluated data quality that takes into consideration underreported data. 

Forests. Using the latest Global Forest Watch data, the 2016 EPI measures tree cover loss over the last 15 years. The use of satellite data allows for global comparability to determine which countries are preventing tree cover loss, which has serious impacts on biodiversity and habitat preservation, climate change, and water cycles.

Box 1. Shifting from Child Mortality to a Broader Environmental Health Measure

Thirty-one to 40 percent of the disease burden for children under the age of five is attributable to environmental risk factors – mainly poor air quality and insufficient sanitation leading to unsafe drinking water.[Footnote 2] Because the environment is such a large contributor to child mortality, the probability of a child dying between his or her first and fifth birthday is a strong indicator of a nation’s environmental health pressures. The connection between child mortality and environmental vectors in part spurred Millennium Development Goal 4 (MDG-4), which set a target to reduce the under-five mortality rate by two-thirds from 1990 to 2015. The global under-five mortality rate declined in this period by more than half. Harnessing this momentum, the Sustainable Development Goals (SDGs) continued MDG-4, setting a target to end all preventable deaths of newborns and children under five by 2030.[footnote 3] SDG-3 promotes human health and also introduces a goal to, by 2030, “substantially reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contamination.” This new goal is one impetus for the 2016 EPI’s introduction of a new indicator to measure environmental health: an Environmental Risk Exposure (ERE) variable that summarizes the health risk that poor air and water quality pose to populations, weighted by how much the particular risk factor contributes to a country’s overall burden of disease (i.e., Disability-Adjusted Life Year or DALY). Summarized across all sexes and ages, this new ERE measure captures a holistic impact of environmental health pressures to a country’s entire population. See Health Issue Profile for more information.

Why Measurement Matters?

The EPI was born out of recognition that environmental policymaking often lacks scientific, quantitative rigor. Millennium Development Goal 7 – to ensure environmental sustainability – brought attention to the linkages between sustainable development and poverty eradication, yet the goal lacked relevant or specific metrics.[footnote 4]

To address this gap, the Environmental Performance Index (EPI) was created with the aim to shape data-driven environmental policymaking. Effective environmental policy is burdened by two related hurdles, both of which are made less onerous through better measurement. First, environmental policy debates elicit deep divisions over the best way forward. Second, uncertainty about the nature and cause of environmental problems makes strong action and allocation of resources difficult to justify. Good environmental measurement injects objectivity into environmental policy debates, reducing disagreement about the scope and seriousness of problems and focusing attention on solutions.

Robust measurement also gives policymakers a foundation from which to promote environmental policy. When decision makers use data to reduce uncertainty, they can advance policy objectives with more than educated guesses or hunches. The trend of using data, and increasingly “big data,” has become a common business and government practice. 

Businesses have long understood that data can make the invisible visible, and firms use metrics ubiquitously to improve performance. Environmental indicators have been proven as useful tools in helping policymakers more efficiently allocate scarce resources. As the time-tested axiom goes, “You can’t manage what you don’t measure.”

Measurement provides what we need to know and highlights gaps in collective knowledge. The EPI was founded to correct the global scarcity of data describing environmental problems. At the local, national, and international levels, decision makers require detailed, accurate information. Indices, like the EPI, direct attention to data gaps, which can help generate efforts to achieve better information and spur novel data-gathering methods.

Why Rank?

Rankings, which are both loved and loathed, create interest and provoke action. They are a vehicle to motivate policy change and, at the very least, they spark conversation about an index’s meaning. How a number is derived, its strengths and its limitations, opens discussion about what we should value and why. Rankings are sensitive to minute methodological changes, and thus have inherent subjective characteristics, but EPI users can pare the Index down to peer groups that afford salient, meaningful comparisons.

The EPI’s primary value is its potential to illuminate avenues for change. More valuable than the rankings in and of themselves are the metrics and data that underpin the index. 

A single number is attention-grabbing, but it is the subsequent inquiry and substantive conversation that are the project’s most useful products. The transparency with which the EPI is constructed and the openness of its underlying data allow countries to use the EPI as a starting point for taking environmental action. These steps ideally would include:

  • development of better measurement and monitoring systems to improve environmental data collection;
  • creation of policies to address particularly weak areas;
  • communication and reporting of national-level data and statistics to international agencies such as the United Nations; and
  • delineation of sub-national metrics and targets for improved environmental performance.
Organization of This Report

This report aims to provide a narrative to help everyone grasp the environmental challenges that all countries face, regardless of the nation’s level of economic development, geography, land area, or population. The report intends to make sense of environmental data’s complexities and nuances and to enable readers to delve into the results presented by the EPI.

The report contains enough detail to provide a working knowledge of the EPI and its methods, yet it is not comprehensive. Specific information about the EPI’s data, indicator calculations, and statistical methods is included in separate materials both on the 2016 EPI website (www.epi.yale.edu) and in forthcoming academic literature. All EPI data and infographics are available for free download and use under a creative commons license. By separating the technical from the illustrative, this report provides a qualitative look into the critical environmental issues that the EPI examines.

The 2016 EPI report is organized as follows:

  • A Methods section provides an overview of how the EPI is calculated, how weightings are applied and take into consideration relevant issues for countries (e.g., what we refer to as “Material Thresholds”), and gaps in existing data;
  • Nine issue profiles frame each environmental problem included in the 2016 EPI, examining the complexities involved in measuring national performance and distilling relevant policy signals from science and available data. These profiles draw attention to obstacles and opportunities posed by comparing disparate countries and the lack of comprehensive, timely and accurate data to develop indicators.
  • The Regional Results and Trends section provides analysis of regional trends and results within relevant economic and political country groups.
  • The report’s Conclusion points to future areas of research.

Show footnotes

  1. Forouzanfar M. H., Alexander L., Anderson H. R., Bachman V. F., Biryukov S., Brauer M., …(2015). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 386, 2287-2323.

  2. Prüss-Üstün, A. (2006). Preventing disease through healthy environments. Towards an estimate of the environmental burden of disease. World Health Organization: Geneva.

  3. United Nations. (2015). Goal 4: Reduce Child Mortality. Available: http://www.un.org/millenniumgoals/childhealth.shtml.

  4. World Economic Forum (WEF) Global Leaders for Tomorrow Environment Task Force, Yale Center for Environmental Law and Policy (YCELP)/Yale University, and Center for International Earth Science Information Network (CIESIN)/ Columbia University, (2000). 2000 Pilot Environmental Sustainability Index (ESI). NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY. Available: http:// sedac.ciesin.columbia.edu/data/set/esi-pilotenvironmental-sustainability-index-2000.

Download the raw data for this chapter here.