The following are key findings from the 2016 Environmental Performance Index.
Chapter
Key Findings
1) The world is making progress addressing some environmental issues while others have worsened considerably. A “global scorecard’ (Figure 1) illustrates this progress and deterioration, showing promising trends in Health Impacts, Access to Drinking Water, and Access to Sanitation. Air Quality (NO2) and Fisheries, however, exhibit troubling declines. Comparing relative performance across issues, the world performs poorly on Wastewater Treatment and Air Quality (PM2.5) as well as in Carbon Intensity Trend indicators. Trends suggest improvement in many areas, yet progress remains slow, and some trends are overshadowed by other, more troubling findings. The world’s nations protect more marine habitat than ever, for instance, yet fish stocks are declining. Performance among areas is linked and trends sometimes conflict, exhibiting the complexity of global environmental measurement.
2) Economic development leads to improvement in some environmental areas, yet development is also associated with increased prevalence of environmental hazards. Air and Water indicators clearly exhibit these conflicting signals. As nations have become wealthier, particularly in Asia, their governments invest in sanitation infrastructure and fewer people are exposed to unsafe water, leading to fewer deaths from waterborne illnesses. But as countries develop, increased industrial production, shipping, and automotive transportation foul the air, exposing human populations to dangerous airborne compounds. Thus, deaths attributed to air pollution have risen steadily in the past decade in step with exposure.
Air pollution is a growing global problem; worse in rapidly developing economies, like China and India, than in wealthy or very poor nations. Yet dangerous air pollution is not confined to any one country or group of countries – it is a global issue. More than 3.5 billion people, or half of the world’s population, live in nations where average exposure to fine particulate matter exceeds levels the World Health Organization (WHO) considers safe (10 micrograms/m3). One-third (1.3 billion) of these people live in the East Asia and Pacific region, where in China and South Korea more than 50 percent of their populations are exposed to unsafe levels of fine particulate matter. In India and Nepal, the percentage is nearly 75 percent. In contrast, drinking water metrics have improved steadily, The number of people lacking access to clean water has been cut nearly in half from 960 million in the year 2000 to 550 million, or around 8 percent of the world’s population, today.
3) When measurement is poor or not aligned with proper management, environmental and human health suffer. EPI shows that sectors with weak measurement are also areas exhibiting decline. Marine fisheries are poorly monitored, for instance, as many fleets misreport or fail to report catch data, and international policy targets are ad hoc and incomplete. It is no surprise that fish stocks around the world are in stark decline. The 2016 EPI, in collaboration with Sea Around Us – a fisheries research initiative based at the University of British Columbia – takes into account the quality of fisheries data by penalizing countries whose data are incomplete or unreliable.
4) Developing policy relevant indicators based in science is essential to appropriate measurement and management. Indicators and policy targets are too often framed by political aims rather than science. Two new EPI indicators – Species Protection and Drinking Water Quality – show how policy targets are frequently defined according to political expediency. The 2016 EPI Species Protection indicator, which relies on the Map of Life – a global database of species – measures the gap between terrestrial protected areas and actual species habitats. This gap (Figure 4) suggests that nationally designated protected areas do not always align with species preservation. Protected areas are often established on marginal lands, rather than in high-value areas where wildlife is forced out by agricultural development and human settlements.
Millennium Development Goal-7 includes an indicator that assesses Access to Drinking Water, yet this MDG metric is not optimally suited to its goal, which is for countries to increase access to “safe drinking water.” The indicator used to measure the goal’s progress is framed in terms of access to “improved” or “unimproved” sources, as determined by a piped (as opposed to open) water source. This metric does not say whether the water from improved sources is actually treated and safe to drink. Data from the Institute for Health Metrics and Evaluation (IHME) – a research organization that produces the Global Burden of Disease, a measure of death attributable to certain risk factors – reveals a radically different picture of unsafe water quality exposure than the one that MDG-7’s indicators paint (Figure 5). In many countries and regions, a significant portion of ‘improved’ drinking water sources are untreated. These results show policy targets that are politically expedient – it is easier, after all, to measure access to “improved” and “unimproved” water than to measure water quality – but not wholly relevant to science or human health.
5) The 2015 Paris Climate Agreement specifies climate change action expected from all countries, yet solid metrics to evaluate performance remain elusive. Measuring climate change performance – that is, assessing which countries are implementing policies that result in measurable climate mitigation – is one of the most urgent challenges facing society today. The inextricable linkage between carbon and economic growth makes disentangling performance signals from emissions difficult. As a result, the 2016 EPI’s Climate and Energy indicators primarily signal how countries are decarbonizing economic growth rather than whether their climate policies are having a tangible effect. These indicators cannot point to underlying drivers of decarbonization, whether they are due to economic decline or through concerted policy effort. Denmark, for instance, has made strong commitments to reduce emissions through increasing efficiency and renewable energy production. Singapore, as a result of its high urban density, has been able to lower its carbon intensity relative to economic peers over the last decade. Other countries, such as Russia, are likely overachieving compared to economic peers due to recession rather than ambitious climate efforts.
Other Conclusions
1) Data from new sources including from cutting-edge technologies help improve global monitoring of progress towards international goals, such as the SDGs, yet these innovations do not represent a policy silver bullet. The EPI uses advances in satellite technology and remote sensing, which contribute to globally comparable datasets where national governments fail to monitor or report environmental data. Satellite data is used to generate air quality and forestry metrics that are more readily comparable and comprehensive than what has emerged from previous models and national reports. These new data sources, however, are not perfect. Satellite-derived tree cover data, for instance, uses a global definition of forest cover that counts plantations and natural forest equally. Because satellites have set orbits and a limited time series, forests with slower growth and regeneration cycles may be incorrectly registered as “loss” depending on the duration of measurement. Long-term, three-year rolling averages of air quality data also result in lower exposure values than data produced by ground-based monitors.
2) Sub-national indicators often illustrate more accurate and actionable data than national level metrics. Environmental issues are rarely confined to national borders. And many environmental issues, when measured at the national level, lose local relevance. How can a single measure of air or water quality define an entire country, particularly when it is as large and diverse as the United States or Russia? The EPI’s selection of the nation-state as the unit of measure is not always the best level of analysis for a particular environmental concern. In the case of Nitrogen Balance, for example, a country can exhibit areas of both excess nitrogen and nitrogen deficiency, due to soil and climatic differences. A national measure of Nitrogen Balance obscures these nuances.
3) Better environmental measurement and indicator systems are needed. Every EPI underscores this conclusion. While there has been progress in some areas of measurement, particularly with technological advances and innovations like satellite data, many environmental concerns lack comparable data to monitor extent or progress. Freshwater quality, species loss, climate adaptation, and waste management are some issues that remain absent from the EPI’s evaluation because of insufficient data. Without this information, environmental management will suffer and natural systems and human health will decline. As the EPI shows, progress occurs only when measurement and management align.