Genetic interactions underlying flower color patterns in Antirrhinum majus
- PMID: 2558047
- DOI: 10.1101/gad.3.11.1758
Genetic interactions underlying flower color patterns in Antirrhinum majus
Abstract
Diverse spatial patterns of flower color in Antirrhinum can be produced by a series of alleles of pallida, a gene encoding an enzyme required for pigment biosynthesis. The alleles arose by imprecise excision of a transposable element, Tam3, and we show that they carry a series of deletions involving progressive removal of sequences adjacent to the excision site. This has enabled us to define three cis-acting upstream regions, A, B, and C, which differentially affect the level of pallida expression in distinct areas of the flower. We show further that an unlinked locus, delila, regulates the spatial distribution of pallida transcript. Deletion of regions ABC at the pallida locus uncouples pallida from regulation by delila, whereas deletion of A or AB brings pallida under regulation by delila in a new area of the flower. These results suggest that diverse patterns of pallida expression reflect the different ways in which alleles interact with a prepattern of both common and spatially specific genetic signals in the flower.
Similar articles
-
Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus.Cell. 1986 Oct 24;47(2):285-96. doi: 10.1016/0092-8674(86)90451-4. Cell. 1986. PMID: 3021338
-
Phenotypic effects of short-range and aberrant transposition in Antirrhinum majus.Plant Mol Biol. 1990 May;14(5):835-44. doi: 10.1007/BF00016516. Plant Mol Biol. 1990. PMID: 1966387
-
Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidearadialis.Plant Cell. 1993 Nov;5(11):1541-53. doi: 10.1105/tpc.5.11.1541. Plant Cell. 1993. PMID: 8312739 Free PMC article.
-
Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus.Dev Genet. 1989;10(6):438-51. doi: 10.1002/dvg.1020100605. Dev Genet. 1989. PMID: 2557989 Review.
-
Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories.Adv Biophys. 2004;38:141-59. Adv Biophys. 2004. PMID: 15493332 Review.
Cited by
-
Genetic factors explaining anthocyanin pigmentation differences.BMC Plant Biol. 2024 Jul 3;24(1):627. doi: 10.1186/s12870-024-05316-w. BMC Plant Biol. 2024. PMID: 38961369 Free PMC article.
-
Flower transcriptional response to long term hot and cold environments in Antirrhinum majus.Front Plant Sci. 2023 Jan 27;14:1120183. doi: 10.3389/fpls.2023.1120183. eCollection 2023. Front Plant Sci. 2023. PMID: 36778675 Free PMC article.
-
A Mutation in the MYBL2-1 Gene Is Associated with Purple Pigmentation in Brassica oleracea.Int J Mol Sci. 2022 Oct 6;23(19):11865. doi: 10.3390/ijms231911865. Int J Mol Sci. 2022. PMID: 36233166 Free PMC article.
-
The combination of R2R3-MYB gene AmRosea1 and hairy root culture is a useful tool for rapidly induction and production of anthocyanins in Antirrhinum majus L.AMB Express. 2021 Sep 14;11(1):128. doi: 10.1186/s13568-021-01286-6. AMB Express. 2021. PMID: 34519881 Free PMC article.
-
Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.).Sci Rep. 2021 May 21;11(1):10721. doi: 10.1038/s41598-021-90141-6. Sci Rep. 2021. PMID: 34021210 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources