iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://pubmed.ncbi.nlm.nih.gov/2558047/
Genetic interactions underlying flower color patterns in Antirrhinum majus - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Nov;3(11):1758-67.
doi: 10.1101/gad.3.11.1758.

Genetic interactions underlying flower color patterns in Antirrhinum majus

Affiliations
Free article

Genetic interactions underlying flower color patterns in Antirrhinum majus

J Almeida et al. Genes Dev. 1989 Nov.
Free article

Abstract

Diverse spatial patterns of flower color in Antirrhinum can be produced by a series of alleles of pallida, a gene encoding an enzyme required for pigment biosynthesis. The alleles arose by imprecise excision of a transposable element, Tam3, and we show that they carry a series of deletions involving progressive removal of sequences adjacent to the excision site. This has enabled us to define three cis-acting upstream regions, A, B, and C, which differentially affect the level of pallida expression in distinct areas of the flower. We show further that an unlinked locus, delila, regulates the spatial distribution of pallida transcript. Deletion of regions ABC at the pallida locus uncouples pallida from regulation by delila, whereas deletion of A or AB brings pallida under regulation by delila in a new area of the flower. These results suggest that diverse patterns of pallida expression reflect the different ways in which alleles interact with a prepattern of both common and spatially specific genetic signals in the flower.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources