iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://pubmed.ncbi.nlm.nih.gov/18514080/
Advances in evaluation of primary brain tumors - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jul;38(4):240-50.
doi: 10.1053/j.semnuclmed.2008.02.005.

Advances in evaluation of primary brain tumors

Affiliations
Review

Advances in evaluation of primary brain tumors

Wei Chen et al. Semin Nucl Med. 2008 Jul.

Abstract

The evaluation of primary brain tumor is challenging. Neuroimaging plays a significant role. At diagnosis, imaging is needed to establish a differential diagnosis, provide prognostic information, as well as direct biopsy. After the initial treatment, imaging is needed to distinguish recurrent disease from treatment-related changes such as radiation necrosis. In low-grade gliomas, this also includes monitoring anaplastic transformation into high-grade tumors. Recently, targeted treatments have been an extremely active area of research. Evaluation in clinical trials of such targeted treatments demands advanced roles of imaging such as treatment planning, monitoring response, and predicting treatment outcomes. Current clinical gold standard magnetic resonance imaging provides superior structural detail but poor specificity in identifying viable tumors in treated brain with surgery/radiation/chemotherapy. (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) is capable of identifying anaplastic transformation and has prognostic value. The sensitivity and specificity of FDG in evaluating recurrent tumor and treatment-induced changes can be significantly improved by coregistration with magnetic resonance imaging and potentially by delayed imaging 3 to 8 hours after injection. Amino acid PET tracers can be more sensitive than FDG in imaging some recurrent tumors, in particular recurrent low-grade tumors. They are also promising for differentiating between recurrent tumors and treatment-induced changes. Newer PET tracers to image important aspects of tumor biology have been actively studied. Tracers for imaging membrane transport such as (18)F-choline have shown promise in differential diagnosis. (18)F-labeled nucleotide analogs such as 3'-deoxy-3'-[(18)F]-fluorothymidine (FLT) and (18)F-FMAU have been developed to image proliferation. The use of FLT has demonstrated prognostic power in predicting treatment response in patients treated with an antiangiogenic agent. Tracers for imaging hypoxia such as (18)F-FMISO have been studied and appear promising in providing prognostic information as well as planning treatment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources