iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://pubmed.ncbi.nlm.nih.gov/17184513/
Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Dec;33(12):1265-8.
doi: 10.1111/j.1440-1681.2006.04522.x.

Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus

Affiliations
Review

Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus

J Horiuchi et al. Clin Exp Pharmacol Physiol. 2006 Dec.

Abstract

1. The dorsomedial hypothalamus (DMH) plays a crucial role in mediating the cardiovascular responses to different stressors, including acute psychological stress and cold stress. Activation of neurons in the DMH evokes increases in arterial pressure and in the activity of sympathetic nerves innervating the heart, blood vessels and brown adipose tissue. The descending pathways from the DMH to the spinal sympathetic outflow include synapses with neurons in medullary nuclei and possibly other brain stem regions. 2. Recent studies from our and other laboratories have indicated that neurons in the rostral ventrolateral medulla (RVLM) and in the region of the raphe pallidus (RP) in the medulla are important components of the descending pathways that mediate the cardiovascular response to activation of the DMH. Neurons in the RP primarily mediate the sympathetic cardiac components of the DMH-evoked response, whereas the RVLM neurons primarily mediate the sympathetic vasomotor component. 3. Activation of DMH neurons not only increases heart rate and sympathetic vasomotor activity, but also resets the baroreceptor reflex such that it remains effective, without any decrease in sensitivity, over a higher operating range of arterial pressure. 4. Activation of 5-hydroxytryptamine 5-HT(1A) receptors in the medulla oblongata leads to a selective suppression of cardiac and sympathetic vasomotor components of the DMH-evoked response, but does not affect sympathetic reflex responses evoked from baroreceptors or chemoreceptors. Thus, central 5-HT(1A) receptors modulate cardiovascular responses evoked from the DMH in a highly potent but selective fashion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources