iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://pubmed.ncbi.nlm.nih.gov/15944807/
Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep;100(5):397-403.
doi: 10.1007/s00395-005-0537-4. Epub 2005 Jun 10.

Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo

Affiliations

Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo

A J Bullard et al. Basic Res Cardiol. 2005 Sep.

Abstract

Objective: Erythropoietin (EPO) is a hormone that is currently used to treat patients with renal failure and anaemia. However, it has also been shown to protect against ischaemia/reperfusion injury; this protection occurring via activation of the ERK 1/2 and PI3K pathways. Since we have previously shown activation of ERK 1/2 and PI3K to be important for protection against reperfusion-induced injury in the myocardium, this study was designed to investigate its effect in the myocardium using both an isolated perfused rat heart and an in vivo rat recovery model of ischaemia-reperfusion.

Methods: Using an in vitro isolated rat heart model of 35 minutes ischaemia and 2 hours reperfusion, EPO (50 ng/ml) was administered to the rat myocardium 5 minutes prior to reperfusion for 20 minutes. The in vivo open-chest rat model consisted of 40 minutes ischaemia followed by 24 hours reperfusion with EPO (5000 U/kg) being administered at the point of reperfusion.

Results: In the isolated perfused heart studies 50 ng/ml EPO was found to provide protection with a % I/R of 22.9% +/- 6.4 vs 54.5% +/- 7.4 for the ischaemic control group. To examine the mechanistic pathways involved in EPO-mediated protection, we co-administered the ERK 1/2 inhibitor, U0126 (10 uM) or the PI3K inhibitors, wortmannin, (100 nM) and LY294002 (15 microM) at reperfusion. U0126, wortmannin and LY294002 all abrogated EPO-mediated protection (% I/R 49.2% +/- 5.6, 46.1% +/- 5.5 and 49.9% +/- 6.1 respectively, p < 0.05). In the in vivo open-chest rat model, the % I/R was significantly attenuated in EPO-treated animals from 53.6 % +/- 3.7 in the control to 32.5% +/- 2.9 (p < 0.05). Likewise, wortmannin abrogated EPO-mediated protection (% I/R 50.7 +/- 2.3 v EPO 32.5% +/- 2.9, p < 0.05).

Conclusion: We demonstrate that EPO, administered at the point of reperfusion, reduced infarct size in an isolated perfused rat heart, in an ERK and PI3K dependent manner; in addition the mechanism was also confirmed in a whole animal model of ischaemia-reperfusion. These results suggest that EPO may be able to directly protect the myocardium against lethal reperfusion-induced injury and so offer the myocardium an additional clinical advantage over and above its ability to improve the oxygen carrying capacity of the blood.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources