iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://pmc.ncbi.nlm.nih.gov/articles/PMC294300/
Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation - PMC Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 May;93(5):1930–1939. doi: 10.1172/JCI117184

Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation.

D F Dinges 1, S D Douglas 1, L Zaugg 1, D E Campbell 1, J M McMann 1, W G Whitehouse 1, E C Orne 1, S C Kapoor 1, E Icaza 1, M T Orne 1
PMCID: PMC294300  PMID: 7910171

Abstract

The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep.

Full text

PDF
1930

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benca R. M., Kushida C. A., Everson C. A., Kalski R., Bergmann B. M., Rechtschaffen A. Sleep deprivation in the rat: VII. Immune function. Sleep. 1989 Feb;12(1):47–52. doi: 10.1093/sleep/12.1.47. [DOI] [PubMed] [Google Scholar]
  2. Bergmann B. M., Everson C. A., Kushida C. A., Fang V. S., Leitch C. A., Schoeller D. A., Refetoff S., Rechtschaffen A. Sleep deprivation in the rat: V. Energy use and mediation. Sleep. 1989 Feb;12(1):31–41. doi: 10.1093/sleep/12.1.31. [DOI] [PubMed] [Google Scholar]
  3. Brown R., Pang G., Husband A. J., King M. G. Suppression of immunity to influenza virus infection in the respiratory tract following sleep disturbance. Reg Immunol. 1989 Sep-Oct;2(5):321–325. [PubMed] [Google Scholar]
  4. Brown R., Price R. J., King M. G., Husband A. J. Interleukin-1 beta and muramyl dipeptide can prevent decreased antibody response associated with sleep deprivation. Brain Behav Immun. 1989 Dec;3(4):320–330. doi: 10.1016/0889-1591(89)90031-7. [DOI] [PubMed] [Google Scholar]
  5. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  6. Dinarello C. A. Biology of interleukin 1. FASEB J. 1988 Feb;2(2):108–115. [PubMed] [Google Scholar]
  7. Dinges D. F., Orne M. T., Whitehouse W. G., Orne E. C. Temporal placement of a nap for alertness: contributions of circadian phase and prior wakefulness. Sleep. 1987 Aug;10(4):313–329. [PubMed] [Google Scholar]
  8. Evans D. L., Folds J. D., Petitto J. M., Golden R. N., Pedersen C. A., Corrigan M., Gilmore J. H., Silva S. G., Quade D., Ozer H. Circulating natural killer cell phenotypes in men and women with major depression. Relation to cytotoxic activity and severity of depression. Arch Gen Psychiatry. 1992 May;49(5):388–395. doi: 10.1001/archpsyc.1992.01820050052009. [DOI] [PubMed] [Google Scholar]
  9. Garty B. Z., Levinson A. I., Danon Y. L., Wilmott R., Douglas S. D. Lymphocyte subpopulations in children with abnormal lymphatic circulation. J Allergy Clin Immunol. 1989 Oct;84(4 Pt 1):515–520. doi: 10.1016/0091-6749(89)90365-5. [DOI] [PubMed] [Google Scholar]
  10. Georgescu R. N., Keller S. E. Decreasing the spontaneous release in NK cell assays. J Immunol Methods. 1987 Oct 23;103(1):143–143. doi: 10.1016/0022-1759(87)90252-3. [DOI] [PubMed] [Google Scholar]
  11. Georgescu R. N., Keller S. E. Overnight storage at 1 degree C does not affect NK cytotoxicity. J Immunol Methods. 1987 Oct 23;103(1):151–151. doi: 10.1016/0022-1759(87)90256-0. [DOI] [PubMed] [Google Scholar]
  12. Glenville M., Broughton R., Wing A. M., Wilkinson R. T. Effects of sleep deprivation on short duration performance measures compared to the Wilkinson auditory vigilance task. Sleep. 1978 Winter;1(2):169–176. doi: 10.1093/sleep/1.2.169. [DOI] [PubMed] [Google Scholar]
  13. Gudewill S., Pollmächer T., Vedder H., Schreiber W., Fassbender K., Holsboer F. Nocturnal plasma levels of cytokines in healthy men. Eur Arch Psychiatry Clin Neurosci. 1992;242(1):53–56. doi: 10.1007/BF02190343. [DOI] [PubMed] [Google Scholar]
  14. Hoddes E., Zarcone V., Smythe H., Phillips R., Dement W. C. Quantification of sleepiness: a new approach. Psychophysiology. 1973 Jul;10(4):431–436. doi: 10.1111/j.1469-8986.1973.tb00801.x. [DOI] [PubMed] [Google Scholar]
  15. Irwin M., Caldwell C., Smith T. L., Brown S., Schuckit M. A., Gillin J. C. Major depressive disorder, alcoholism, and reduced natural killer cell cytotoxicity. Role of severity of depressive symptoms and alcohol consumption. Arch Gen Psychiatry. 1990 Aug;47(8):713–719. doi: 10.1001/archpsyc.1990.01810200021003. [DOI] [PubMed] [Google Scholar]
  16. Irwin M., Daniels M., Bloom E. T., Smith T. L., Weiner H. Life events, depressive symptoms, and immune function. Am J Psychiatry. 1987 Apr;144(4):437–441. doi: 10.1176/ajp.144.4.437. [DOI] [PubMed] [Google Scholar]
  17. Irwin M., Smith T. L., Gillin J. C. Electroencephalographic sleep and natural killer activity in depressed patients and control subjects. Psychosom Med. 1992 Jan-Feb;54(1):10–21. doi: 10.1097/00006842-199201000-00002. [DOI] [PubMed] [Google Scholar]
  18. Irwin M., Smith T. L., Gillin J. C. Low natural killer cytotoxicity in major depression. Life Sci. 1987 Nov 2;41(18):2127–2133. doi: 10.1016/0024-3205(87)90531-5. [DOI] [PubMed] [Google Scholar]
  19. Keller S. E., Schleifer S. J., Sherman J., Camerino M. S., Smith H., Jr, Stein M. Comparison of a simplified whole blood and isolated lymphocyte stimulation technique. Immunol Commun. 1981;10(4-5):417–431. doi: 10.3109/08820138109050707. [DOI] [PubMed] [Google Scholar]
  20. Kiecolt-Glaser J. K., Garner W., Speicher C., Penn G. M., Holliday J., Glaser R. Psychosocial modifiers of immunocompetence in medical students. Psychosom Med. 1984 Jan-Feb;46(1):7–14. doi: 10.1097/00006842-198401000-00003. [DOI] [PubMed] [Google Scholar]
  21. Kiecolt-Glaser J. K., Glaser R., Strain E. C., Stout J. C., Tarr K. L., Holliday J. E., Speicher C. E. Modulation of cellular immunity in medical students. J Behav Med. 1986 Feb;9(1):5–21. doi: 10.1007/BF00844640. [DOI] [PubMed] [Google Scholar]
  22. Krueger J. M., Majde J. A. Sleep as a host defense: its regulation by microbial products and cytokines. Clin Immunol Immunopathol. 1990 Nov;57(2):188–199. doi: 10.1016/0090-1229(90)90033-m. [DOI] [PubMed] [Google Scholar]
  23. Krueger J. M. Somnogenic activity of immune response modifiers. Trends Pharmacol Sci. 1990 Mar;11(3):122–126. doi: 10.1016/0165-6147(90)90198-h. [DOI] [PubMed] [Google Scholar]
  24. Lisper H. O., Kjellberg A. Effects of 24-hour sleep deprivation on rate of decrement in a 10-minute auditory reaction time task. J Exp Psychol. 1972 Dec;96(2):287–290. doi: 10.1037/h0033615. [DOI] [PubMed] [Google Scholar]
  25. Moldofsky H., Lue F. A., Davidson J. R., Gorczynski R. Effects of sleep deprivation on human immune functions. FASEB J. 1989 Jun;3(8):1972–1977. doi: 10.1096/fasebj.3.8.2785942. [DOI] [PubMed] [Google Scholar]
  26. Naitoh P., Kales A., Kollar E. J., Smith J. C., Jacobson A. Electroencephalographic activity after prolonged sleep loss. Electroencephalogr Clin Neurophysiol. 1969 Jul;27(1):2–11. doi: 10.1016/0013-4694(69)90103-5. [DOI] [PubMed] [Google Scholar]
  27. Norman S. E., Resnick L., Cohn M. A., Duara R., Herbst J., Berger J. R. Sleep disturbances in HIV-seropositive patients. JAMA. 1988 Aug 19;260(7):922–922. [PubMed] [Google Scholar]
  28. Opp M. R., Kapás L., Toth L. A. Cytokine involvement in the regulation of sleep. Proc Soc Exp Biol Med. 1992 Oct;201(1):16–27. doi: 10.3181/00379727-201-43474. [DOI] [PubMed] [Google Scholar]
  29. Opstad P. K., Aakvaag A. The effect of sleep deprivation on the plasma levels of hormones during prolonged physical strain and calorie deficiency. Eur J Appl Physiol Occup Physiol. 1983;51(1):97–107. doi: 10.1007/BF00952542. [DOI] [PubMed] [Google Scholar]
  30. Palmblad J., Akerstedt T., Fröberg J., Melander A., von Schenck H. Thyroid and adrenomedullary reactions during sleep deprivation. Acta Endocrinol (Copenh) 1979 Feb;90(2):233–239. doi: 10.1530/acta.0.0900233. [DOI] [PubMed] [Google Scholar]
  31. Palmblad J., Cantell K., Strander H., Fröberg J., Karlsson C. G., Levi L., Granström M., Unger P. Stressor exposure and immunological response in man: interferon-producing capacity and phagocytosis. J Psychosom Res. 1976;20(3):193–199. doi: 10.1016/0022-3999(76)90020-9. [DOI] [PubMed] [Google Scholar]
  32. Palmblad J., Petrini B., Wasserman J., Akerstedt T. Lymphocyte and granulocyte reactions during sleep deprivation. Psychosom Med. 1979 Jun;41(4):273–278. doi: 10.1097/00006842-197906000-00001. [DOI] [PubMed] [Google Scholar]
  33. Radomski M. W., Hart L. E., Goodman J. M., Plyley M. J. Aerobic fitness and hormonal responses to prolonged sleep deprivation and sustained mental work. Aviat Space Environ Med. 1992 Feb;63(2):101–106. [PubMed] [Google Scholar]
  34. Rechtschaffen A., Bergmann B. M., Everson C. A., Kushida C. A., Gilliland M. A. Sleep deprivation in the rat: X. Integration and discussion of the findings. Sleep. 1989 Feb;12(1):68–87. [PubMed] [Google Scholar]
  35. Rubin R. T., Kollar E. J., Slater G. G., Clark B. R. Excretion of 17-hydroxycorticosteroids and vanillylmandelic acid during 205 hours of sleep deprivation in man. Psychosom Med. 1969 Jan-Feb;31(1):68–79. doi: 10.1097/00006842-196901000-00007. [DOI] [PubMed] [Google Scholar]
  36. Shapiro H. M. Flow cytometry of DNA content and other indicators of proliferative activity. Arch Pathol Lab Med. 1989 Jun;113(6):591–597. [PubMed] [Google Scholar]
  37. VanHelder T., Radomski M. W. Sleep deprivation and the effect on exercise performance. Sports Med. 1989 Apr;7(4):235–247. doi: 10.2165/00007256-198907040-00002. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES