iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://oeis.org/A123072
A123072 - OEIS
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123072
Bishops on an 8n+1 X 8n+1 board (see Robinson paper for details).
5
1, 2, 72, 7200, 1411200, 457228800, 221298739200, 149597947699200, 134638152929280000, 155641704786247680000, 224746621711341649920000, 396453040698806670458880000, 838894634118674914690990080000, 2097236585296687286727475200000000, 6115541882725140128097317683200000000
OFFSET
0,2
LINKS
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence zeta(2k+1).]
FORMULA
From_Reinhard Zumkeller_, Feb 16 2010: (Start)
a(n) = ceiling((((2*n)! / n!)^2) / 2).
a(n) = A001700(n-1) * A010050(n). (End)
From Benedict W. J. Irwin, Jun 05 2016: (Start)
G.f. for a(n)/(n!)^2 : 1/2 + EllipticK(16*x)/Pi, which is the E.g.f for A187535.
G.f. for a(n)/(n!)^3 : 2F2(1/2, 1/2; 1, 1; 16z)/2.
a(n) = n!*A187535(n) = binomial(2*n-1, n-1)*(2*n)!.
(End)
a(n) = A156992(2n,n). - Alois P. Heinz, Apr 30 2017
a(n) ~ asy(2*n-1) where asy(n) = (2*n/e)^n*(18*n + 6 + 1/n)/9. - Peter Luschny, Dec 05 2019
Sum_{n>=0} 1/a(n) = 1 + StruveL(0, 1/2)*Pi/4, where StruveL is the modified Struve function. - Amiram Eldar, Dec 04 2022
MAPLE
For Maple program see A005635.
MATHEMATICA
Table[(((2 n)!/n!)^2)/2, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)
Table[SeriesCoefficient[Series[1/2 + EllipticK[16 x]/Pi, {x, 0, 20}], n] n! n!, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)
CROSSREFS
Cf. A173331. [Reinhard Zumkeller, Feb 16 2010]
Sequence in context: A253316 A051443 A246486 * A351764 A317346 A099681
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 28 2006
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Apr 30 2017
STATUS
approved