iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://oeis.org/A068700
A068700 - OEIS
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068700
The concatenation of n with n-1 and n with n+1 both yield primes (twin primes).
4
42, 78, 102, 108, 180, 192, 270, 300, 312, 330, 342, 390, 420, 522, 540, 612, 660, 822, 840, 882, 1002, 1140, 1230, 1272, 1482, 1542, 1632, 1770, 2100, 2190, 2682, 2742, 3072, 3198, 3408, 3642, 3828, 4242, 4452, 4572, 4740, 4788, 4998, 5622, 5718, 5832
OFFSET
1,1
COMMENTS
All terms are congruent to {0, 12, 18} mod 30. - Zak Seidov, Oct 24 2014
a(n) = 2 * A102478(n). - Reinhard Zumkeller, Jun 27 2015
EXAMPLE
42 is a member as 4241 as well as 4243 are primes.
MAPLE
filter:= proc(n)
local d;
d:= ilog10(n)+1;
isprime(n*10^d+n-1) and isprime(n*10^d+n+1)
end proc:
select(filter, [$1..10^5]); # Robert Israel, Oct 24 2014
MATHEMATICA
d[n_]:=IntegerDigits[n]; conQ[n_]:=And@@PrimeQ[FromDigits/@{Join[d[n], d[n+1]], Join[d[n], d[n-1]]}]; Select[Range[5850], conQ[#] &] (* Jayanta Basu, May 21 2013 *)
PROG
(PARI) for(n=2, 200, if(isprime(n*10^ceil(log(n-1)/log(10))+n-1)*isprime(n*10^ceil(log(n+1)/log(10))+n+1)==1, print1(n, ", ")))
(Haskell)
import Data.List.Ordered (isect)
a068700 n = a068700_list !! (n-1)
a068700_list = isect a030457_list a054211_list
-- Reinhard Zumkeller, Jun 27 2015
CROSSREFS
Common terms of A030458 and A052089.
Intersection of A030457 and A054211; A102478.
Sequence in context: A259737 A039525 A072326 * A303283 A135850 A250381
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Mar 04 2002
EXTENSIONS
More terms from Benoit Cloitre, Mar 09 2002
STATUS
approved