iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://oeis.org/A054554
A054554 - OEIS
login
A054554
a(n) = 4*n^2 - 10*n + 7.
41
1, 3, 13, 31, 57, 91, 133, 183, 241, 307, 381, 463, 553, 651, 757, 871, 993, 1123, 1261, 1407, 1561, 1723, 1893, 2071, 2257, 2451, 2653, 2863, 3081, 3307, 3541, 3783, 4033, 4291, 4557, 4831, 5113, 5403, 5701, 6007, 6321, 6643, 6973, 7311, 7657, 8011, 8373, 8743
OFFSET
1,2
COMMENTS
Move in 1-3 direction in a spiral organized like A068225 etc.
Equals binomial transform of [1, 2, 8, 0, 0, 0, ...]. - Gary W. Adamson, May 03 2008
Ulam's spiral (NE spoke). - Robert G. Wilson v, Oct 31 2011
LINKS
James Grime and Brady Haran, Prime Spirals, Numberphile video (2013).
Scientific American, Cover of the March 1964 issue
FORMULA
a(n) = 8*n + a(n-1) - 14 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: -x*(7*x^2+1)/(x-1)^3. - Colin Barker, Sep 21 2012
For n > 2, a(n) = A014105(n) + A014105(n-1). - Bruce J. Nicholson, May 07 2017
From Leo Tavares, Feb 21 2022: (Start)
a(n) = A003215(n-2) + 2*A000217(n-1). See Hexagonal Dual Rays illustration in links.
a(n) = A227776(n-1) - 4*A000217(n-1). (End)
a(k+1) = 4k^2 - 2k + 1 in the Numberphile video. - Frank Ellermann, Mar 11 2020
E.g.f.: exp(x)*(7 - 6*x + 4*x^2) - 7. - Stefano Spezia, Apr 24 2024
MAPLE
A054554:=n->4*n^2 -10*n + 7; seq(A054554(k), k=1..100); # Wesley Ivan Hurt, Nov 05 2013
MATHEMATICA
f[n_] := 4n^2 -10n + 7; Array[f, 40] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
PROG
(PARI) a(n)=4*n^2-10*n+7 \\ Charles R Greathouse IV, Nov 05 2013
CROSSREFS
Cf. A014105.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Sequence in context: A179026 A179027 A145907 * A051939 A257764 A146728
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Edited by Frank Ellermann, Feb 24 2002
STATUS
approved