iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://oeis.org/A014448
A014448 - OEIS
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014448
Even Lucas numbers: L(3n).
43
2, 4, 18, 76, 322, 1364, 5778, 24476, 103682, 439204, 1860498, 7881196, 33385282, 141422324, 599074578, 2537720636, 10749957122, 45537549124, 192900153618, 817138163596, 3461452808002, 14662949395604, 62113250390418
OFFSET
0,1
COMMENTS
This is the Lucas sequence V(4,-1). - Bruno Berselli, Jan 08 2013
LINKS
Pooja Bhadouria, Deepika Jhala and Bijendra Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1 (2014), pp. 81-92; sequence L_{4,n}.
H. H. Ferns, Problem B-115, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 5, No. 2 (1967), p. 202; Identities for F_{kn} and L{kn}, Solution to Problem B-115 by Stanley Rabinowitz, ibid., Vol. 6, No. 1 (1968), pp. 92-93.
Tanya Khovanova, Recursive Sequences.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
FORMULA
G.f.: (2-4*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) +a(n-2) with n>1, a(0)=2, a(1)=4.
a(n) = (2+sqrt(5))^n + (2-sqrt(5))^n.
a(n) = 2*A001077(n).
a(n) = A000032(3*n).
a(n) = Sum_{k=0..n} C(n,k)*Lucas(n+k). - Paul D. Hanna, Oct 19 2010
a(n) = Fibonacci(6*n)/Fibonacci(3*n), n>0. - Gary Detlefs, Dec 26 2010
From Peter Bala, Mar 22 2015: (Start)
a(n) = ( Fibonacci(3*n + 2*k) - F(3*n - 2*k) )/Fibonacci(2*k) for nonzero integer k.
a(n) = ( Fibonacci(3*n + 2*k + 1) + F(3*n - 2*k - 1) )/Fibonacci(2*k + 1) for arbitrary integer k. (End)
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 20*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = L(n)*(L(n-1)*L(n+1) + 2*(-1)^n). - J. M. Bergot, Feb 05 2016
From Peter Bala Oct 14 2019: (Start)
Sum_{n >= 1} 1/( a(n) + (-1)^(n+1)*20/a(n) ) = 3/16.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + (-1)^(n+1)*20/a(n) ) = 1/16. (End)
a(n) = (15*Fibonacci(n)^2*Lucas(n) + Lucas(n)^3)/4 (Ferns, 1967). - Amiram Eldar, Feb 06 2022
EXAMPLE
a(4) = L(3 * 4) = L(12) = 322. - Indranil Ghosh, Feb 05 2017
MATHEMATICA
Table[LucasL[3*n], {n, 0, 100}] (* G. C. Greubel, Nov 07 2018 *)
PROG
(PARI) polsym(x^2-4*x-1, 100)
(PARI) a(n)=sum(k=0, n, binomial(n, k)*(fibonacci(n+k-1)+fibonacci(n+k+1))) \\ Paul D. Hanna, Oct 19 2010
(Sage) [lucas_number2(n, 4, -1) for n in range(0, 23)] # Zerinvary Lajos, May 14 2009
(Magma) [Lucas(3*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
CROSSREFS
Cf. Lucas(k*n): A005248 (k = 2), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A089772 (k = 11), A089775 (k = 12).
Sequence in context: A325850 A052689 A139104 * A277033 A295767 A318230
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman
STATUS
approved