iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://oeis.org/A005937
A005937 - OEIS
login
A005937
Pseudoprimes to base 6.
(Formerly M5246)
10
35, 185, 217, 301, 481, 1105, 1111, 1261, 1333, 1729, 2465, 2701, 2821, 3421, 3565, 3589, 3913, 4123, 4495, 5713, 6533, 6601, 8029, 8365, 8911, 9331, 9881, 10585, 10621, 11041, 11137, 12209, 14315, 14701, 15841, 16589, 17329, 18361, 18721
OFFSET
1,1
COMMENTS
Theorem: If both numbers q and 2q-1 are primes and n=q*(2q-1) then 6^(n-1) == 1 (mod n) (n is in the sequence) iff q is of the form 12k+1. 2701, 18721, 49141, 104653, 226801, 665281, ... are such terms. This sequence is a subsequence of A122783. - Farideh Firoozbakht, Sep 12 2006
Composite numbers k such that 6^(k-1) == 1 (mod k). - Michel Lagneau, Feb 18 2012
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A12.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. J. Mathar, T. D. Noe, and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (Mathar 1..118, Noe 119..1000, Greathouse 1001..10000)
C. Pomerance & N. J. A. Sloane, Correspondence, 1991
MATHEMATICA
Select[Range[20000], ! PrimeQ[ # ] && PowerMod[6, #-1, # ] == 1 &] (* Farideh Firoozbakht, Sep 12 2006 *)
CROSSREFS
Cf. A001567 (pseudoprimes to base 2), A122783.
Sequence in context: A220047 A101954 A220201 * A341043 A219831 A184200
KEYWORD
nonn
EXTENSIONS
More terms from Farideh Firoozbakht, Sep 12 2006
STATUS
approved