iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://oeis.org/A003464
A003464 - OEIS
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003464
a(n) = (6^n - 1)/5.
(Formerly M4425)
74
0, 1, 7, 43, 259, 1555, 9331, 55987, 335923, 2015539, 12093235, 72559411, 435356467, 2612138803, 15672832819, 94036996915, 564221981491, 3385331888947, 20311991333683, 121871948002099, 731231688012595, 4387390128075571
OFFSET
0,3
COMMENTS
a(n) = A125118(n, 5) for n>4. - Reinhard Zumkeller, Nov 21 2006
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=7, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>1, a(n-1)=(-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
Repunits to base 6. A repunit consisting of zero 1's (empty string) gives the empty sum, i.e., 0 (only case where leading zero is shown, for convenience). - Daniel Forgues, Jul 08 2011
3*a(n) is the total number of holes in a certain triangle fractal (start with 6 triangles, 3 holes) after n iterations. See illustration in links. - Kival Ngaokrajang, Feb 21 2015
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Repunit.
FORMULA
Binomial transform of A003948. If preceded by 0, then binomial transform of powers of 5, A000351 (preceded by 0). - Paul Barry, Mar 28 2003
a(n) = Sum_{k=1..n} C(n, k)*5^(k-1).
E.g.f.: (exp(6*x) - exp(x))/5. - Paul Barry, Mar 28 2003
G.f.: x/((1-x)*(1-6*x)). - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 06 2005
a(n) = 6*a(n-1) + 1 with a(1)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = 7*a(n-1) - 6*a(n-2). - Vincenzo Librandi, Nov 08 2012
EXAMPLE
a(n) in base 6.................... a(n) in base 10:
0..................................0
1..................................1
11.................................7
111................................43
1111...............................259
11111..............................1555
111111.............................9331
1111111............................55987, etc. - Philippe Deléham, Mar 12 2014
MAPLE
a:=n->sum(6^(n-j), j=1..n): seq(a(n), n=1..21); # Zerinvary Lajos, Jan 04 2007
A003464:=1/(6*z-1)/(z-1); # conjectured by Simon Plouffe in his 1992 dissertation
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+6*a[n-2]+2 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
MATHEMATICA
(6^Range[20]-1)/5 (* Harvey P. Dale, Dec. 14, 2010 *)
LinearRecurrence[{7, -6}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
PROG
(PARI) for(n=1, 10, print1((6^n-1)/5, ", "));
(Sage) [lucas_number1(n, 7, 6) for n in range(1, 22)] # Zerinvary Lajos, Apr 23 2009
(Sage) [gaussian_binomial(n, 1, 6) for n in range(1, 22)] # Zerinvary Lajos, May 28 2009
(Maxima) A003464(n):=floor((6^n-1)/5)$ makelist(A003464(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Magma) [n le 2 select n-1 else 7*Self(n-1) - 6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012
CROSSREFS
Sequence in context: A271197 A240366 A329018 * A022036 A277670 A015451
KEYWORD
nonn,easy
EXTENSIONS
More terms from Reinhard Zumkeller, Nov 21 2006
G.f. corrected by Philippe Deléham, Mar 11 2014
STATUS
approved