Volum
Lo volum (var. volume) es la porcion o quantitat d'espaci tridimensional tancat dins una frontièra. Per exemple, lo volum es l'espaci o forma qu'una substància (solid, liquid, gas o plasma) ocupa o conten.[1] Lo volum es abitualament quantificat numericament utilizant l'unitat derivada del Sistèma Internacional d'Unitats, lo mètre cubic.
Las formas matematicas plaçadas dins l'espaci donan luòc a de volums. Los volums formats per de figuras simplas –com las formas regularas, circularas o d'arèstas dechas– se pòdon calcular aisidament utilisant de formulas matematicas. D'autra costat, las formas mai complicadas se tròban mejans lo calcul integral s'existís una formula per la frontièra. Las figuras d'una dimension (coma la linha) e las formas de doas dimensions (coma los carrats) an un volum zèro dins l'espaci tridimensional.
Lo volum d'un solid (que siá de forma regulara o irregulara) se pòt determinar a partir del desplaçament de fluid. Lo desplaçament de liquid tanben se pòt utilizar per determinar lo volum d'un gas. Lo volum combinat de doas substàncias es generalament mai elevat que lo volum d'una de las substàncias. Pasmens, a vegadas una substància se dissòlv dins l'autra, atal lo volum, dins aquel cas, es pas additiu.
En geometria diferenciala, lo volum s'exprima dins de tèrmes de forma volum, e es un invariant riemanniana globala importanta. D'autra costat, en termodinamica, lo volum es un paremètre fonamental, e es la variabla conjugada de la pression.
Unitats
modificarQuina que siá l'unitat de longor a la seuna correspondéncia en unitat de volum, normalament lo volum del cube l'arèsta qu'a la longor donada. Per exemple, un centimètre cubic (cm³) es lo volum del cube que las arestas mesuran 1 cm de longor.
Dins lo Sistèma Internacional d'Unitats (SI), l'unitat estandard de volum es lo mèstre cubic (m³). Lo sistèma metric tanben inclutz lo litre (l) coma unitat de volum; un litre es lo volum d'un cube d'arèsta detz centimetres (un decimetre cubic). Alara:
- 1 litre = (10 cm)³ = 1000 centimetres cubics = 0.001 metres cubics,
llavors
- 1 metre cubic = 1000 litres
Las quantitats pichonas de liquid se meruran en millilitres, onte
- 1 millilitre = 0,001 litres = 1 centimetre cubic
D'autres unitats tradicionalas de volum dins d'autres sistèmas qu'encara son en vigors dins qualques païses son entre autre las seguentas: poce cubic, pè cubic, onça liquida, pinta, quart, galon], barril, còrda, peck, bushel o hogshead.
Fórmulas per calcular de volums
modificarCos | Formula del volum | Variables |
---|---|---|
Cube | a = longor d'una arèsta | |
Cilindre | r = radi de la fàcia circulara, h = nautor | |
Prisme | B = aira de la basa, h = nautor | |
Prisme rectangular | l = longor, w = largor, h = nautor | |
Esfèra | r = radi de l'esfèra qu'es l'integrala de l'aira superficiala de l'esfèra | |
Ellipsoíd | a, b, c = semiaxes de l'ellipsoíd | |
Piramida | B = aira de la basa, h = nautor de la piramida | |
Còn | r = radi del cercle de la basa, h = distància de la base al vertèx (nautor) | |
Tetraèdre[2] | a = longor de l'arèsta | |
Parallelepepèd |
|
a, b e c son las longors de las arèstas, e α, β e γ los angles intèrnes entre eles Nòta: tenent los vectors directors non coplanars de las tres arèstas , lo volum se pòt calcular a partir del produch mixte dels tres vectors: . |
Quina que siá figura generada per limpament (cal calcul integral) |
h = quina que siá dimension de la figura, A(h) = aira de las seccions transversalas perpendicularas a h descrichas coma una foncion lo long d'h. a e b son las limitas d'integracion per lo limpament volumetric. (Aquò foncionarà per quina que siá figura se la seuna aira transversala se pòt determinar dempuèi d'h). | |
Quina que siá figura generada per rotacion (cal calcul integral) |
e son las foncions qu'exprimisson los radis extèrne e intèrne de la foncion, respectivament. | |
Ampola de Klein | A pas volum (a pas d'interior) |
Volum dels solids platonics
modificarLos solids platonics comprenon los cinc unics polièdres regulars. Se l'arèsta del polièdre es a, lo seu volum se dona per la taula seguenta:
Polièdre | Volum | Imatge | Polièdre | Volum | Imatge |
---|---|---|---|---|---|
Tetraèdre | Dodecaèdre regular | ||||
Cube | Icosaèdre | on es lo nombre d'aur | |||
Octaèdre |
Proporcion entre los volums d'un còn, esfèra e cilindre del meteis radi e nautor
modificarLas formulas anterioras se pòdon utilizar per demostrar que los volums d'un còn, esfèra e cilindre del meteis radi e nautor seguisson la proporcion 1 : 2 : 3. La demostracion es la seguenta: siá lo radi r e la nautor h (que per l'esfèra es 2r). Lo volum del còn es:
Lo volum de l'esfèra es:
Lo volum del cilindre es:
La descobèrta de la proporcion 2 : 3 entre los volums de l'esfèra e lo cilindre s'atribuís a Arquimèdes.[3]
Calcul del volum per integralas
modificarL'integrala multiple es una partida limitada de , lo volum del cilindre qu'a per generatriu la frontièra de , delimitat pel plan e la superfícia d'equacion –amb positiva e continua sus – es:
Dins lo cas que lo domèni es definit per las condicions simplas , , lo calcul se reduch a:
Se es una partida limitada de e la foncion constanta 1 es integrable sus , lo volum de es alara:
Dins lo cas que lo domèni es definit per las condicions simples , e , aquel calcul se redutz a:
Per la linealitat de l'integracion, un domèni dificil de definit se pòt partir en diverses susdomènis exprimables per de condicions simples.
Coordenadas non cartesianas
modificarSe lo domèni s'exprima melhor en coordenadas cilindricas per las condicions simplas , lo calcul es:
- onte es una partida limitada de
Se lo domèni s'exprima melhor dins las coordenadas esfericas per las condicions simplas , lo calcul dona:
- onte es una partida limitada de
Solid de rotacion
modificarDins lo cas que lo domèni es un solid de revolucion la frontièra qu'es engendrada per la rotacion d'una corba d'equacion a l'entorn de l'axe , lo calcul del volum se reduch a una integrala simple
Teorèma de la divergéncia
modificarEl teorema de la divergència permet reduir el càlcul del volum a una integrala de superfícia:
Onte es la frontièra de e lo vector unitari normal a dirigit cap a l'exterior de .
Referéncias
modificar- ↑ (en) Your Dictionary entry for "volume"
- ↑ Cox (en)Coxeter, H. S. M.: Regular Polytopes (Methuen and Co., 1948). Table I(i).
- ↑ (en)Chris RorresTomb of Archimedes: Sources ed:Courant Institute of Mathematical Sciences