iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://ncatlab.org/nlab/show/diff/Vect
Vect (changes) in nLab

nLab Vect (changes)

Showing changes from revision #22 to #23: Added | Removed | Changed

Context

Category theory

Linear algebra

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology

Introductions

Definitions

Paths and cylinders

Homotopy groups

Basic facts

Theorems

Contents

Definition

Given a field kk, the category of kk-vector spaces Vect kVect_k is the category whose

  1. objects are vector spaces,

  2. morphisms are linear maps.

If the field kk is understood, one often just writes VectVect.

Via direct sum and tensor product of vector spaces k\otimes_k, this becomes a symmetric monoidal category in two compatible ways, making it a distributive monoidal category, in particular a rig category.

The study of VectVect is called linear algebra.

Properties

For a field kk, the category Vect kVect_k is cocomplete and closed monoidal.

General

There For exist any variants field with better category-theoretic properties. One example is the category ofbornologicalkk , vector the spaces, category which is both completeVect kVect_k , is complete cocomplete , and closed cocomplete monoidal . See and e.g. Houzel closed 1973 monoidal , with respect to the Meyer tensor 1999 product of vector spaces , .Meyer 2004 for more.

Splitting lemma

Assuming the axiom of choice (and essentially by the basis theorem): \begin{proposition}\label{ShortExactSequencesSplit} In VectVect every short exact sequence splits. \end{proposition} (See there.)

\begin{remark} On FinDimVect this is a categorification of the rank-nullity theorem. \end{remark}

Finite-dimensional vector spaces

The full subcategory of Vect consisting of finite-dimensional vector spaces may be denoted FinDimVect.

This is a compact closed category (see here).

FinDimVectFinDimVect is where most of ordinary linear algebra lives, although much of it makes sense in all of VectVect. See also at quantum information theory in terms of dagger-compact categories.

On the other hand, anything involving transposes or inner products really takes place in FinFin Hilb.

Modules

More generally, for RR any ring (not necessarily a field) then the analog of VectVect is the category RRMod of RR-modules and module homomorphisms between them.

Vector bundles

For XX a suitable space of sorts, there is the category Vect(X) of vector bundles over XX. Specifically for XX a topological space, there is the category of topological vector bundles over XX. For X=*X = \ast the point space, then this is equivalently the category of plain vector spaces:

Vect(*)Vect. Vect(\ast) \simeq Vect \,.

References

Topological vector spaces

On There bornological are vector various spaces: categories oftopological vector spaces, for instance bornological topological vector spaces.

  • Christian Houzel. Espaces analytiques relatifs et throrrme de finitude. Math. Ann. v.205 (1973), p.13-54.

  • Ralf Meyer. Analytic cyclic cohomology (1999). (arXiv:math/9906205).

  • Ralf Meyer. Embeddings of derived categories of bornological modules (2004). (arXiv:math/0410596).

category: category

Last revised on May 1, 2024 at 04:03:35. See the history of this page for a list of all contributions to it.