DESTINY+
Names | Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science |
---|---|
Mission type | Asteroid flyby |
Operator | ISAS / JAXA |
Website | http://destiny.isas.jaxa.jp/ |
Mission duration | ≥4 years (planned) cruise: ≈2 years[1] |
Spacecraft properties | |
Manufacturer | NEC Corporation |
Launch mass | 480 kg (1,060 lb) including 60 kg of xenon and 15.4 kg of hydrazine[2] |
Power | 4.7 kW[2] from solar panels |
Start of mission | |
Launch date | 2028 (planned)[3] |
Rocket | H3[3] |
Launch site | Tanegashima Space Center |
Contractor | JAXA |
Orbital parameters | |
Reference system | Geocentric orbit |
Regime | Highly elliptical orbit |
Perigee altitude | 230 km (140 mi) |
Apogee altitude | 40,000 km (25,000 mi) |
Inclination | 30.0° |
Flyby of 3200 Phaethon | |
Closest approach | 2030 (planned)[3] |
Distance | 500 km (planned) |
Transponders | |
Band | X-band[2] |
Instruments | |
DESTINY Dust Analyzer (DDA) Telescopic Camera for Phaethon (TCAP) Multiband Camera for Phaethon (MCAP) | |
Medium-class Science Program |
DESTINY+ (Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) is a planned mission to flyby the Geminids meteor shower parent body 3200 Phaethon, and sample dust originating from the "rock comet".[4] The spacecraft is being developed by the Japanese space agency JAXA and will demonstrate advanced technologies for future deep space exploration. As of October 2024, DESTINY+ is planned to be launched in fiscal year 2028.[3]
Overview
DESTINY+ will be launched from Tanegashima Space Center on an H3 launch vehicle into low Earth orbit,[3] and will spend 1.5 years raising its orbit with ion engines.[2] A launch vehicle change from Epsilon S to H3 delayed the launch date from 2025 to 2028.[3] A lunar flyby (at ~300,000 km (190,000 mi)) will accelerate the probe into an interplanetary orbit. During this cruise time it will fly by a few near Earth objects for study, including the transition body 3200 Phaethon in 2030, as well as measure interplanetary and interstellar dust.[3][5][6]
The probe's ion engines have the capability to perform another orbit transfer to study additional objects.[1]
Objectives
DESTINY+ will be a technology demonstrator to further improve operations of low cost solar electric propulsion in deep space. It will also demonstrate innovative light-weight solar array panel technology. The scientific aspect of this mission is to understand origin and nature of dusts, which are key sources of organic compounds to Earth. It will also observe dusts from comet/asteroid 3200 Phaethon using a dust analyzer and will map its surface using a multiband telescopic camera to understand the mechanisms of dust ejection.[2] The spacecraft will come as close as 500 km (310 mi) from 3200 Phaethon.[2]
Spacecraft
DESTINY+ will use ultra light-weight solar panels and heat-actuated folding radiators, along with compact avionics. The spacecraft is designed to tolerate a radiation dose up to approximately 30 krad by using a 3 mm aluminum shield.[2]
Propulsion
The spacecraft will be propelled by four μ10 solar electric ion engines,[2] as used by Hayabusa and Hayabusa2, but while its predecessors operated only up to three engines simultaneously, DESTINY+ will use all four simultaneously[7] for a total thrust of 40 mN (specific impulse: 3000 seconds; acceleration: 83 μm/s2; power: 1670 watts.[2]) The total dry mass (excludes xenon propellant) of the ion engine system is 59 kg (130 lb).[2]
Payload
DESTINY+ will carry three scientific instruments:[5]
- DESTINY Dust Analyzer (DDA) — The DESTINY Dust Analyzer (2.7 kg) will be provided by the German Aerospace Center (DLR),[8] and is being developed by the University of Stuttgart.[2][9]
- Telescopic Camera for Phaethon (TCAP) — The telescopic camera has a mass of 15.8 kg.[2]
- Multiband Camera for Phaethon (MCAP) — The multiband camera has a mass of 3.5 kg and will detect light in 390 nm, 550 nm, 700 nm, 850 nm wavelengths.[2]
See also
- Lucy – NASA mission to flyby multiple Jupiter trojans
- OKEANOS – proposed JAXA Jupiter trojan flyby mission using solar sail/solar electric propulsion hybrid
- OSIRIS-REx – NASA sample-return mission to the carbonaceous asteroid 101955 Bennu
- Rosetta – ESA mission to comet 67P/Churyumov–Gerasimenko
References
- ^ a b DESTINY Mission Overview Yasuhiro KAWAKATSU JAXA
- ^ a b c d e f g h i j k l m Toyota, Hiroyuki; Nishiyama, Kazutaka; Kawakatsu, Yasuhiro (15 August 2017). "DESTINY+: Deep Space Exploration Technology Demonstrator and Explorer to Asteroid 3200 Phaethon" (PDF). Low-Cost Planetary Missions Conference. Archived from the original (PDF) on 14 September 2017. Retrieved 21 September 2017.
- ^ a b c d e f g "宇宙科学・探査ミッションの進捗状況について" [Space Science and Exploration Mission Progress] (PDF). ISAS (in Japanese). CAO. 9 October 2024. p. 11. Retrieved 11 October 2024.
- ^ Ryabova, Galina O.; Asher, David J.; Campbell-Brown, Margaret D. (10 October 2019). Meteoroids: Sources of Meteors on Earth and Beyond. Cambridge University Press. ISBN 978-1-108-42671-8.
- ^ a b Studies on Solar System Explorations using DESTINY: the Demonstration and Experiment of Space Technology for Interplanetary Voyage Takahiro Iwata, Yasuhiro Kawakatsu, Go Murakami, Yuichiro Ezoe, Shingo Kameda, Kunihiro Keika, Tomoko Arai, Shuji Matsuura, Takanao Saiki, Takeshi Imamura, Kazunori Ogohara, Akira Oyama, Toshinori Ikenaga; ISTS Special Issue: Selected papers from the 30th International Symposium on Space Technology and Science Vol. 14 (2016) No. ists30; DOI: http://doi.org/10.2322/tastj.14.Pk_111
- ^ Sommer, M.; Krüger, H.; Srama, R.; Hirai, T.; Kobayashi, M.; Arai, T.; Sasaki, S.; Kimura, H.; Moragas-Klostermeyer, G.; Strub, P.; Lohse, A.-K. (21 September 2020). Destiny+ Dust Analyzer – Campaign and timeline preparation for interplanetary and interstellar dust observation during the 4-year transfer phase from Earth to Phaethon. Europlanet Science Congress 2020. Copernicus Publications. Retrieved 27 September 2020.
- ^ "DESTINY+: Technology Demonstration and Exploration of Asteroid 3200 Phaethon" (PDF). Institute of Space and Astronautical Science (ISAS) / JAXA. 20 September 2017. Retrieved 22 September 2017.
- ^ "DLR-JAXA Joint Statement concerning the bilateral cooperation" (Press release). JAXA. 10 September 2017. Retrieved 21 September 2017.
- ^ "DESTINY+ – Germany and Japan begin new asteroid mission". German Aerospace Center (DLR). 12 November 2020. Retrieved 15 November 2020.
External links
- Official project site (in Japanese)
- CS1 Japanese-language sources (ja)
- Articles with short description
- Short description matches Wikidata
- Use American English from March 2021
- All Wikipedia articles written in American English
- Use dmy dates from March 2021
- Articles with Japanese-language sources (ja)
- Missions to asteroids
- Missions to comets
- Japanese space probes
- 2028 in spaceflight
- Proposed space probes