iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://link.springer.com/chapter/10.1007/978-3-319-02475-2_13
Estimating Uncertainty in White Matter Tractography Using Wild Non-local Bootstrap | SpringerLink
Skip to main content

Estimating Uncertainty in White Matter Tractography Using Wild Non-local Bootstrap

  • Conference paper
  • First Online:
Computational Diffusion MRI and Brain Connectivity

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Statistics derived from diffusion MRI data, especially those related to tractography, are often highly non-linear and non-Gaussian with unknown complex distributions. In estimating the sampling distributions of these statistics, many existing techniques are limited by their reliance on models that assume normality and that are yet to be verified in complex situations where various noise sources, such as physiologic variation, scanner instability, and imaging noise, might be simultaneously present. In complex conditions as such, a viable solution is the bootstrap, which due to its distribution-independent nature is an appealing tool for the estimation of the variability of almost any statistic, without relying on complicated theoretical calculations, but purely on computer simulation. In this paper, we will examine whether a new bootstrap scheme, called the wild non-local bootstrap (W-NLB) , is effective in estimating the uncertainty in tractography data. In contrast to the residual or wild bootstrap , which relies on a predetermined data model, or the repetition bootstrap , which requires repeated signal measurements, W-NLB does not assume a predetermined form of data structure and obviates the need for time-consuming multiple acquisitions. W-NLB hinges on the observation that local imaging information recurs in the image. This self-similarity implies that imaging information coming from spatially distant (non-local) regions can be exploited for more effective estimation of statistics of interest. In silico evaluations indicate that W-NLB produces distribution estimates that are in closer agreement to those generated using Monte Carlo simulations, compared with the conventional residual bootstrap. Evaluations using in vivo data show that W-NLB produces results that are in agreement with our knowledge on the white matter connection architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A probability density function (PDF) that characterizes the distribution of fiber orientations on the unit sphere.

References

  1. Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–566 (2010)

    Google Scholar 

  2. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, B., Hsu, E.W.: Noise removal in magnetic resonance diffusion tensor imaging. Magn. Reson. Med. 54, 393–407 (2005)

    Article  Google Scholar 

  4. Chung, S., Lu, Y., Henry, R.G.: Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33(2), 531–541 (2006)

    Article  Google Scholar 

  5. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27, 425–441 (2008)

    Article  Google Scholar 

  6. Davison, A., Hinkley, D.: Bootstrap Methods and Their Application. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  7. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability. CRC Press, Boca Raton, Florida (1994)

    Google Scholar 

  8. Friman, O., Farnebäck, G., Westin, C.F.: A Bayesian approach for stochastic white matter tractography. IEEE Trans. Med. Imaging 25, 965–977 (2006)

    Article  Google Scholar 

  9. Härdle, W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  10. Härdle, W., Müller, M.: Multivariate and semiparametric kernel regression. In: Schimek, M.G. (ed.) Smoothing and Regression: Approaches, Computation, and Application. Wiley, Hoboken (2000)

    Google Scholar 

  11. Jbabdi, S., Woolrich, M., Andersson, J., Behrens, T.: A Bayesian framework for global tractography. NeuroImage 37(1), 116–129 (2007)

    Article  Google Scholar 

  12. Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J.: Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum. Brain Mapp. 32(3), 461–479 (2011)

    Article  Google Scholar 

  13. Jones, D.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn. Reson. Med. 49(1), 7–12 (2003)

    Article  Google Scholar 

  14. Jones, D.K.: Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans. Med. Imaging 27(9), 1268–1274 (2008)

    Article  Google Scholar 

  15. Jones, D.K., Basser, P.J.: “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52, 979–993 (2004)

    Article  Google Scholar 

  16. Lazar, M., Alexander, A.L.: Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2), 524–532 (2005)

    Article  Google Scholar 

  17. Mammen, E.: Bootstrap and wild bootstrap for high dimensional linear models. Ann. Stat. 21(1), 255–285 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Manjón, J., Carbonell-Caballero, J., Lull, J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12(4), 514–523 (2008)

    Article  Google Scholar 

  19. Manjón, J., Coupé, P., Martí-Bonmatí, L., Collins, D., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)

    Article  Google Scholar 

  20. Nadaraya, E.: On estimating regression. Theory Probab. Appl. 9(1), 141–142 (1964)

    Article  Google Scholar 

  21. Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004)

    Article  Google Scholar 

  22. Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H., Dubey, P., Blitz, A., van Zijl, P., Mori, S.: Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36, 630–644 (2007)

    Article  Google Scholar 

  23. Watson, G.: Smooth regression analysis. Sankhyā Indian J. Stat. A 26(4), 359–372 (1964)

    MATH  Google Scholar 

  24. Whitcher, B., Tuch, D., Wisco, J., Sorensen, A., Wang, L.: Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging. Hum. Brain Mapp. 29(3), 346–362 (2008)

    Article  Google Scholar 

  25. Wu, C.F.J.: Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat. 14(4), 1261–1295 (1986)

    Article  MATH  Google Scholar 

  26. Yap, P.T., An, H., Chen, Y., Shen, D.: The non-local bootstrap – estimation of uncertainty in diffusion MRI. In: Information Processing in Medical Imaging (IPMI), Asilomar. LNCS, vol. 7917, 2013, pp. 390–401

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by a UNC start-up fund and NIH grants (EB006733, EB008374, EB009634, MH088520, AG041721, and MH100217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pew-Thian Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yap, PT., An, H., Chen, Y., Shen, D. (2014). Estimating Uncertainty in White Matter Tractography Using Wild Non-local Bootstrap. In: Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O'Donnell, L., Panagiotaki, E. (eds) Computational Diffusion MRI and Brain Connectivity. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-02475-2_13

Download citation

Publish with us

Policies and ethics