Abstract
Statistics derived from diffusion MRI data, especially those related to tractography, are often highly non-linear and non-Gaussian with unknown complex distributions. In estimating the sampling distributions of these statistics, many existing techniques are limited by their reliance on models that assume normality and that are yet to be verified in complex situations where various noise sources, such as physiologic variation, scanner instability, and imaging noise, might be simultaneously present. In complex conditions as such, a viable solution is the bootstrap, which due to its distribution-independent nature is an appealing tool for the estimation of the variability of almost any statistic, without relying on complicated theoretical calculations, but purely on computer simulation. In this paper, we will examine whether a new bootstrap scheme, called the wild non-local bootstrap (W-NLB) , is effective in estimating the uncertainty in tractography data. In contrast to the residual or wild bootstrap , which relies on a predetermined data model, or the repetition bootstrap , which requires repeated signal measurements, W-NLB does not assume a predetermined form of data structure and obviates the need for time-consuming multiple acquisitions. W-NLB hinges on the observation that local imaging information recurs in the image. This self-similarity implies that imaging information coming from spatially distant (non-local) regions can be exploited for more effective estimation of statistics of interest. In silico evaluations indicate that W-NLB produces distribution estimates that are in closer agreement to those generated using Monte Carlo simulations, compared with the conventional residual bootstrap. Evaluations using in vivo data show that W-NLB produces results that are in agreement with our knowledge on the white matter connection architecture.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A probability density function (PDF) that characterizes the distribution of fiber orientations on the unit sphere.
References
Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–566 (2010)
Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)
Chen, B., Hsu, E.W.: Noise removal in magnetic resonance diffusion tensor imaging. Magn. Reson. Med. 54, 393–407 (2005)
Chung, S., Lu, Y., Henry, R.G.: Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33(2), 531–541 (2006)
Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27, 425–441 (2008)
Davison, A., Hinkley, D.: Bootstrap Methods and Their Application. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1997)
Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability. CRC Press, Boca Raton, Florida (1994)
Friman, O., Farnebäck, G., Westin, C.F.: A Bayesian approach for stochastic white matter tractography. IEEE Trans. Med. Imaging 25, 965–977 (2006)
Härdle, W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge (1992)
Härdle, W., Müller, M.: Multivariate and semiparametric kernel regression. In: Schimek, M.G. (ed.) Smoothing and Regression: Approaches, Computation, and Application. Wiley, Hoboken (2000)
Jbabdi, S., Woolrich, M., Andersson, J., Behrens, T.: A Bayesian framework for global tractography. NeuroImage 37(1), 116–129 (2007)
Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J.: Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum. Brain Mapp. 32(3), 461–479 (2011)
Jones, D.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn. Reson. Med. 49(1), 7–12 (2003)
Jones, D.K.: Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans. Med. Imaging 27(9), 1268–1274 (2008)
Jones, D.K., Basser, P.J.: “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52, 979–993 (2004)
Lazar, M., Alexander, A.L.: Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2), 524–532 (2005)
Mammen, E.: Bootstrap and wild bootstrap for high dimensional linear models. Ann. Stat. 21(1), 255–285 (1993)
Manjón, J., Carbonell-Caballero, J., Lull, J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12(4), 514–523 (2008)
Manjón, J., Coupé, P., Martí-Bonmatí, L., Collins, D., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)
Nadaraya, E.: On estimating regression. Theory Probab. Appl. 9(1), 141–142 (1964)
Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004)
Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H., Dubey, P., Blitz, A., van Zijl, P., Mori, S.: Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36, 630–644 (2007)
Watson, G.: Smooth regression analysis. Sankhyā Indian J. Stat. A 26(4), 359–372 (1964)
Whitcher, B., Tuch, D., Wisco, J., Sorensen, A., Wang, L.: Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging. Hum. Brain Mapp. 29(3), 346–362 (2008)
Wu, C.F.J.: Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat. 14(4), 1261–1295 (1986)
Yap, P.T., An, H., Chen, Y., Shen, D.: The non-local bootstrap – estimation of uncertainty in diffusion MRI. In: Information Processing in Medical Imaging (IPMI), Asilomar. LNCS, vol. 7917, 2013, pp. 390–401
Acknowledgements
This work was supported in part by a UNC start-up fund and NIH grants (EB006733, EB008374, EB009634, MH088520, AG041721, and MH100217).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Yap, PT., An, H., Chen, Y., Shen, D. (2014). Estimating Uncertainty in White Matter Tractography Using Wild Non-local Bootstrap. In: Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O'Donnell, L., Panagiotaki, E. (eds) Computational Diffusion MRI and Brain Connectivity. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-02475-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-02475-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02474-5
Online ISBN: 978-3-319-02475-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)