Abstract
Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis.
The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If one wanted to assume regularity on the constraint functions of (14), linear independence constraint classification would be applicable.
References
Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4–20 (2007)
Achterberg, T.: Constraint integer programming (2007)
Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01929-6_23
Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization: Festschrift for Martin Grötschel, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38189-8_18
BARON. https://minlp.com/baron
Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1), 238–252 (1962)
Berthold, T., Feydy, T., Stuckey, P.J.: Rapid learning for binary programs. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 51–55. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_8
Berthold, T., Gleixner, A.M., Heinz, S., Vigerske, S.: Analyzing the computational impact of MIQCP solver components. Numer. Algebra Control Optim. 2(4), 739–748 (2012)
Berthold, T., Stuckey, P.J., Witzig, J.: Local rapid learning for integer programs. Technical report 18–56, ZIB, Takustr. 7, 14195 Berlin (2018)
Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50(1), 3–15 (2002)
Bonami, P., et al.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2), 186–204 (2008)
Coey, C., Lubin, M., Vielma, J.P.: Outer approximation with conic certificates for mixed-integer convex problems. arXiv preprint arXiv:1808.05290 (2018)
Couenne. https://www.coin-or.org/Couenne/
Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965)
Davey, B., Boland, N., Stuckey, P.J.: Efficient intelligent backtracking using linear programming. INFORMS J. Comput. 14(4), 373–386 (2002)
Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)
FICO Xpress Optimizer. https://www.fico.com/de/products/fico-xpress-optimization
Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1–3), 327–349 (1994)
Forsgren, A., Gill, P.E., Wong, E.: Primal and dual active-set methods for convex quadratic programming. Math. Program. 159(1–2), 469–508 (2016)
Ginsberg, M.L.: Dynamic backtracking. J. Artif. Intell. Res. 1, 25–46 (1993)
Gleixner, A., et al.: The SCIP Optimization Suite 6.0. Technical report 18–26, ZIB, 18–56, ZIB, Takustr. 7, 14195 Berlin (2018)
Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Manage. Sci. 31(12), 1533–1546 (1985)
Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-03199-5
Jiang, Y., Richards, T., Richards, B.: Nogood backmarking with min-conflict repair in constraint satisfaction and optimization. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 21–39. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58601-6_87
Kellner, K., Pfetsch, M.E., Theobald, T.: Irreducible infeasible subsystems of semidefinite systems. arXiv preprint arXiv:1804.01327 (2018)
Khachiyan, L.G.: A polynomial algorithm in linear programming. Doklady Academii Nauk SSSR 244, 1093–1096 (1979)
Kılınç, M.R., Sahinidis, N.V.: Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with BARON. Optim. Methods Softw. 33(3), 540–562 (2018)
Kocis, G.R., Grossmann, I.E.: Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. Ind. Eng. Chem. Res. 27(8), 1407–1421 (1988)
Kronqvist, J., Bernal, D., Lundell, A., Grossmann, I.: A review and comparison of solvers for convex MINLP. Optim. Eng. (2018)
Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. J. Glob. Optim. 64(2), 249–272 (2016)
Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Giorgi, G., Kjeldsen, T.H. (eds.) Traces and Emergence of Nonlinear Programming, pp. 247–258. Springer, Basel (2014). https://doi.org/10.1007/978-3-0348-0439-4_11
Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)
Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008, pp. 105–132. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_5
Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25(2), 157–168 (2003)
Marques-Silva, J.P., Sakallah, K.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)
Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)
Mészáros, C.: The BPMPD interior point solver for convex quadratic problems. Optim. Meth. Softw. 11(1–4), 431–449 (1999)
MINLPLib: Githash 033934c0. http://www.minlplib.org/
Murty, K.G., Yu, F.-T.: Linear Complementarity, Linear and Nonlinear Programming, vol 3. Citeseer (1988)
Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-40065-5
Nocedal, J., Wright, S.J.: Nonlinear equations. In: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, pp. 270–302. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5_11
Pólik, I.: Some more ways to use dual information in MILP. In: International Symposium on Mathematical Programming, Pittsburgh, PA (2015)
Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)
Sandholm, T., Shields, R.: Nogood learning for mixed integer programming. In: Workshop on Hybrid Methods and Branching Rules in Combinatorial Optimization, Montréal (2006)
Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artif. Intell. 9(2), 135–196 (1977)
Vavasis, S.A.: Complexity issues in global optimization: a survey. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 27–41. Springer, New York (1995). https://doi.org/10.1007/978-1-4615-2025-2_2
Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework. Optim. Meth. Softw. 33(3), 563–593 (2018)
Viswanathan, J., Grossmann, I.E.: A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990)
Wächter, A.: Short tutorial: getting started with Ipopt in 90 minutes. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)
Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995)
Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed integer programming. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 211–220. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_17
Witzig, J., Gleixner, A.: Conflict-driven heuristics for mixed integer programming. Technical report 19–08, ZIB, Takustr. 7, 14195 Berlin (2019)
Acknowledgments
We thank Zsolt Csizmadia for his valuable comments on Sect. 4. The work for this article has been conducted within the Research Campus Modal funded by the German Federal Ministry of Education and Research (fund number 05M14ZAM). We thank three anonymous reviewers for their valuable suggestions and helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Witzig, J., Berthold, T., Heinz, S. (2019). A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-19212-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19211-2
Online ISBN: 978-3-030-19212-9
eBook Packages: Computer ScienceComputer Science (R0)