iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://link.springer.com/chapter/10.1007/978-3-030-19212-9_6
A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming | SpringerLink
Skip to main content

A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis.

The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If one wanted to assume regularity on the constraint functions of (14), linear independence constraint classification would be applicable.

References

  1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4–20 (2007)

    Article  MathSciNet  Google Scholar 

  2. Achterberg, T.: Constraint integer programming (2007)

    Google Scholar 

  3. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01929-6_23

    Chapter  Google Scholar 

  4. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization: Festschrift for Martin Grötschel, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38189-8_18

    Chapter  MATH  Google Scholar 

  5. BARON. https://minlp.com/baron

  6. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1), 238–252 (1962)

    Article  MathSciNet  Google Scholar 

  7. Berthold, T., Feydy, T., Stuckey, P.J.: Rapid learning for binary programs. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 51–55. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_8

    Chapter  MATH  Google Scholar 

  8. Berthold, T., Gleixner, A.M., Heinz, S., Vigerske, S.: Analyzing the computational impact of MIQCP solver components. Numer. Algebra Control Optim. 2(4), 739–748 (2012)

    Article  MathSciNet  Google Scholar 

  9. Berthold, T., Stuckey, P.J., Witzig, J.: Local rapid learning for integer programs. Technical report 18–56, ZIB, Takustr. 7, 14195 Berlin (2018)

    Google Scholar 

  10. Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50(1), 3–15 (2002)

    Article  MathSciNet  Google Scholar 

  11. Bonami, P., et al.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2), 186–204 (2008)

    Article  MathSciNet  Google Scholar 

  12. Bonmin. https://projects.coin-or.org/Bonmin

  13. Coey, C., Lubin, M., Vielma, J.P.: Outer approximation with conic certificates for mixed-integer convex problems. arXiv preprint arXiv:1808.05290 (2018)

  14. Couenne. https://www.coin-or.org/Couenne/

  15. Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965)

    Article  MathSciNet  Google Scholar 

  16. Davey, B., Boland, N., Stuckey, P.J.: Efficient intelligent backtracking using linear programming. INFORMS J. Comput. 14(4), 373–386 (2002)

    Article  MathSciNet  Google Scholar 

  17. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    Article  MathSciNet  Google Scholar 

  18. FICO Xpress Optimizer. https://www.fico.com/de/products/fico-xpress-optimization

  19. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1–3), 327–349 (1994)

    Article  MathSciNet  Google Scholar 

  20. Forsgren, A., Gill, P.E., Wong, E.: Primal and dual active-set methods for convex quadratic programming. Math. Program. 159(1–2), 469–508 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ginsberg, M.L.: Dynamic backtracking. J. Artif. Intell. Res. 1, 25–46 (1993)

    Article  Google Scholar 

  22. Gleixner, A., et al.: The SCIP Optimization Suite 6.0. Technical report 18–26, ZIB, 18–56, ZIB, Takustr. 7, 14195 Berlin (2018)

    Google Scholar 

  23. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Manage. Sci. 31(12), 1533–1546 (1985)

    Article  MathSciNet  Google Scholar 

  24. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-03199-5

    Book  MATH  Google Scholar 

  25. Jiang, Y., Richards, T., Richards, B.: Nogood backmarking with min-conflict repair in constraint satisfaction and optimization. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 21–39. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58601-6_87

    Chapter  Google Scholar 

  26. Kellner, K., Pfetsch, M.E., Theobald, T.: Irreducible infeasible subsystems of semidefinite systems. arXiv preprint arXiv:1804.01327 (2018)

  27. Khachiyan, L.G.: A polynomial algorithm in linear programming. Doklady Academii Nauk SSSR 244, 1093–1096 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Kılınç, M.R., Sahinidis, N.V.: Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with BARON. Optim. Methods Softw. 33(3), 540–562 (2018)

    Article  MathSciNet  Google Scholar 

  29. Kocis, G.R., Grossmann, I.E.: Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. Ind. Eng. Chem. Res. 27(8), 1407–1421 (1988)

    Article  Google Scholar 

  30. Kronqvist, J., Bernal, D., Lundell, A., Grossmann, I.: A review and comparison of solvers for convex MINLP. Optim. Eng. (2018)

    Google Scholar 

  31. Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. J. Glob. Optim. 64(2), 249–272 (2016)

    Article  MathSciNet  Google Scholar 

  32. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Giorgi, G., Kjeldsen, T.H. (eds.) Traces and Emergence of Nonlinear Programming, pp. 247–258. Springer, Basel (2014). https://doi.org/10.1007/978-3-0348-0439-4_11

    Chapter  Google Scholar 

  33. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)

    Article  MathSciNet  Google Scholar 

  34. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008, pp. 105–132. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_5

    Chapter  MATH  Google Scholar 

  35. Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25(2), 157–168 (2003)

    Article  MathSciNet  Google Scholar 

  36. Marques-Silva, J.P., Sakallah, K.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  37. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  Google Scholar 

  38. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MathSciNet  Google Scholar 

  39. Mészáros, C.: The BPMPD interior point solver for convex quadratic problems. Optim. Meth. Softw. 11(1–4), 431–449 (1999)

    Article  MathSciNet  Google Scholar 

  40. MINLPLib: Githash 033934c0. http://www.minlplib.org/

  41. Murty, K.G., Yu, F.-T.: Linear Complementarity, Linear and Nonlinear Programming, vol 3. Citeseer (1988)

    Google Scholar 

  42. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  43. Nocedal, J., Wright, S.J.: Nonlinear equations. In: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, pp. 270–302. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5_11

    Chapter  MATH  Google Scholar 

  44. Pólik, I.: Some more ways to use dual information in MILP. In: International Symposium on Mathematical Programming, Pittsburgh, PA (2015)

    Google Scholar 

  45. Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)

    Article  Google Scholar 

  46. Sandholm, T., Shields, R.: Nogood learning for mixed integer programming. In: Workshop on Hybrid Methods and Branching Rules in Combinatorial Optimization, Montréal (2006)

    Google Scholar 

  47. Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artif. Intell. 9(2), 135–196 (1977)

    Article  Google Scholar 

  48. Vavasis, S.A.: Complexity issues in global optimization: a survey. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 27–41. Springer, New York (1995). https://doi.org/10.1007/978-1-4615-2025-2_2

    Chapter  MATH  Google Scholar 

  49. Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework. Optim. Meth. Softw. 33(3), 563–593 (2018)

    Article  MathSciNet  Google Scholar 

  50. Viswanathan, J., Grossmann, I.E.: A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990)

    Article  Google Scholar 

  51. Wächter, A.: Short tutorial: getting started with Ipopt in 90 minutes. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)

    Google Scholar 

  52. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995)

    Article  Google Scholar 

  53. Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed integer programming. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 211–220. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_17

    Chapter  MATH  Google Scholar 

  54. Witzig, J., Gleixner, A.: Conflict-driven heuristics for mixed integer programming. Technical report 19–08, ZIB, Takustr. 7, 14195 Berlin (2019)

    Google Scholar 

Download references

Acknowledgments

We thank Zsolt Csizmadia for his valuable comments on Sect. 4. The work for this article has been conducted within the Research Campus Modal funded by the German Federal Ministry of Education and Research (fund number 05M14ZAM). We thank three anonymous reviewers for their valuable suggestions and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Berthold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Witzig, J., Berthold, T., Heinz, S. (2019). A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics