Abstract
Bin Packing with Minimum Color Fragmentation (BPMCF) is an extension of the Bin Packing Problem in which each item has a size and a color and the goal is to minimize the sum of the number of bins containing items of each color. In this work, we introduce the BPMCF and present a decomposition strategy to solve the problem, where the assignment of items to bins is formulated as a binary decision diagram and an optimal integrated solutions is identified through a mixed-integer linear programming model. Our computational experiments show that the proposed approach greatly outperforms a direct formulation of BPMCF and that its performance is suitable for large instances of the problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11
Balogh, J., Békési, J., Dósa, G., Epstein, L., Kellerer, H., Tuza, Z.: Online results for black and white bin packing. Theor. Comput. Syst. 56(1), 137–155 (2015)
Balogh, J., Békési, J., Dosa, G., Kellerer, H., Tuza, Z.: Black and white bin packing. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 131–144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38016-7_12
Behle, M.: On threshold BDDs and the optimal variable ordering problem. J. Comb. Optim. 16(2), 107–118 (2008). https://doi.org/10.1007/s10878-007-9123-z
Bergman, D., Bodur, M., Cardonha, C., Cire, A.A.: Network models for multiobjective discrete optimization. arXiv:1802.08637 (2018)
Bergman, D., Cire, A.A.: Decomposition based on decision diagrams. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 45–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2_4
Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_6
Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompositions. Manage. Sci. 64(10), 4700–4720 (2018). https://doi.org/10.1287/mnsc.2017.2849
Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016). https://doi.org/10.1287/ijoc.2015.0648
Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8_3
Bergman, D., Cire, A.A., Van Hoeve, W.J., Hooker, J.: Decision Diagrams for Optimization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9
Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-3_5
Bergman, D., Lozano, L.: Decision diagram decomposition for quadratically constrained binary optimization (2018)
Böhm, M., Sgall, J., Veselý, P.: Online colored bin packing. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 35–46. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18263-6_4
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819
Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992). https://doi.org/10.1145/136035.136043
Dawande, M., Kalagnanam, J., Sethuraman, J.: Variable sized bin packing with color constraints. Electron. Notes Discrete Math. 7, 154–157 (2001)
Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17(3), 449–467 (1965)
Elhedhli, S., Li, L., Gzara, M., Naoum-Sawaya, J.: A branch-and-price algorithm for the bin packing problem with conflicts. INFORMS J. Comput. 23(3), 404–415 (2011)
Gendreau, M., Laporte, G., Semet, F.: Heuristics and lower bounds for the bin packing problem with conflicts. Comput. Oper. Res. 31(3), 347–358 (2004)
Gurobi Optimization, LLC: Gurobi optimizer reference manual (2018). http://www.gurobi.com
Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_30
Jansen, K.: An approximation scheme for bin packing with conflicts. J. Comb. Optim. 3(4), 363–377 (1999)
Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling. Inf. Comput. 132(2), 85–108 (1997)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Kochetov, Y., Kondakov, A.: VNS matheuristic for a bin packing problem with a color constraint. Electron. Notes Discrete Math. 58, 39–46 (2017)
Kondakov, A., Kochetov, Y.: A core heuristic and the branch-and-price method for a bin packing problem with a color constraint. In: Eremeev, A., Khachay, M., Kochetov, Y., Pardalos, P. (eds.) OPTA 2018. CCIS, vol. 871, pp. 309–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93800-4_25
Lozano, L., Bergman, D., Smith, J.C.: On the consistent path problem (2018)
Matsumoto, K., Hatano, K., Takimoto, E.: Decision diagrams for solving a job scheduling problem under precedence constraints. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 103. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Saarbrücken (2018)
Miller, D.M., Drechsler, R.: Implementing a multiple-valued decision diagram package. In: Proceedings of the 28th IEEE International Symposium on Multiple-Valued Logic, pp. 52–57. IEEE (1998)
Muritiba, A.E.F., Iori, M., Malaguti, E., Toth, P.: Algorithms for the bin packing problem with conflicts. INFORMS J. Comput. 22(3), 401–415 (2010)
Peeters, M., Degraeve, Z.: The co-printing problem: a packing problem with a color constraint. Oper. Res. 52(4), 623–638 (2004)
Raghunathan, A.U., Bergman, D., Hooker, J., Serra, T., Kobori, S.: Seamless multimodal transportation scheduling (2018)
Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price algorithm. INFORMS J. Comput. 25(2), 244–255 (2013)
Shachnai, H., Tamir, T.: Polynomial time approximation schemes for class-constrained packing problems. J. Sched. 4(6), 313–338 (2001)
Shachnai, H., Tamir, T.: Tight bounds for online class-constrained packing. Theoret. Comput. Sci. 321(1), 103–123 (2004)
Trick, M.A.: A dynamic programming approach for consistency and propagation for knapsack constraints. Ann. Oper. Res. 118(1), 73–84 (2003). https://doi.org/10.1023/A:1021801522545
Xavier, E.C., Miyazawa, F.K.: The class constrained bin packing problem with applications to video-on-demand. Theoret. Comput. Sci. 393(1–3), 240–259 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bergman, D., Cardonha, C., Mehrani, S. (2019). Binary Decision Diagrams for Bin Packing with Minimum Color Fragmentation. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-19212-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19211-2
Online ISBN: 978-3-030-19212-9
eBook Packages: Computer ScienceComputer Science (R0)