iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: http://link.springer.com/chapter/10.1007/978-3-030-19212-9_4
Binary Decision Diagrams for Bin Packing with Minimum Color Fragmentation | SpringerLink
Skip to main content

Binary Decision Diagrams for Bin Packing with Minimum Color Fragmentation

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

Bin Packing with Minimum Color Fragmentation (BPMCF) is an extension of the Bin Packing Problem in which each item has a size and a color and the goal is to minimize the sum of the number of bins containing items of each color. In this work, we introduce the BPMCF and present a decomposition strategy to solve the problem, where the assignment of items to bins is formulated as a binary decision diagram and an optimal integrated solutions is identified through a mixed-integer linear programming model. Our computational experiments show that the proposed approach greatly outperforms a direct formulation of BPMCF and that its performance is suitable for large instances of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11

    Chapter  Google Scholar 

  2. Balogh, J., Békési, J., Dósa, G., Epstein, L., Kellerer, H., Tuza, Z.: Online results for black and white bin packing. Theor. Comput. Syst. 56(1), 137–155 (2015)

    Article  MathSciNet  Google Scholar 

  3. Balogh, J., Békési, J., Dosa, G., Kellerer, H., Tuza, Z.: Black and white bin packing. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 131–144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38016-7_12

    Chapter  MATH  Google Scholar 

  4. Behle, M.: On threshold BDDs and the optimal variable ordering problem. J. Comb. Optim. 16(2), 107–118 (2008). https://doi.org/10.1007/s10878-007-9123-z

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergman, D., Bodur, M., Cardonha, C., Cire, A.A.: Network models for multiobjective discrete optimization. arXiv:1802.08637 (2018)

  6. Bergman, D., Cire, A.A.: Decomposition based on decision diagrams. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 45–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2_4

    Chapter  Google Scholar 

  7. Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_6

    Chapter  Google Scholar 

  8. Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompositions. Manage. Sci. 64(10), 4700–4720 (2018). https://doi.org/10.1287/mnsc.2017.2849

    Article  Google Scholar 

  9. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016). https://doi.org/10.1287/ijoc.2015.0648

    Article  MathSciNet  MATH  Google Scholar 

  10. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8_3

    Chapter  Google Scholar 

  11. Bergman, D., Cire, A.A., Van Hoeve, W.J., Hooker, J.: Decision Diagrams for Optimization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

    Book  MATH  Google Scholar 

  12. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-3_5

    Chapter  MATH  Google Scholar 

  13. Bergman, D., Lozano, L.: Decision diagram decomposition for quadratically constrained binary optimization (2018)

    Google Scholar 

  14. Böhm, M., Sgall, J., Veselý, P.: Online colored bin packing. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 35–46. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18263-6_4

    Chapter  MATH  Google Scholar 

  15. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

    Article  MATH  Google Scholar 

  16. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992). https://doi.org/10.1145/136035.136043

    Article  MathSciNet  Google Scholar 

  17. Dawande, M., Kalagnanam, J., Sethuraman, J.: Variable sized bin packing with color constraints. Electron. Notes Discrete Math. 7, 154–157 (2001)

    Article  MathSciNet  Google Scholar 

  18. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17(3), 449–467 (1965)

    Article  MathSciNet  Google Scholar 

  19. Elhedhli, S., Li, L., Gzara, M., Naoum-Sawaya, J.: A branch-and-price algorithm for the bin packing problem with conflicts. INFORMS J. Comput. 23(3), 404–415 (2011)

    Article  MathSciNet  Google Scholar 

  20. Gendreau, M., Laporte, G., Semet, F.: Heuristics and lower bounds for the bin packing problem with conflicts. Comput. Oper. Res. 31(3), 347–358 (2004)

    Article  MathSciNet  Google Scholar 

  21. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2018). http://www.gurobi.com

  22. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_30

    Chapter  Google Scholar 

  23. Jansen, K.: An approximation scheme for bin packing with conflicts. J. Comb. Optim. 3(4), 363–377 (1999)

    Article  MathSciNet  Google Scholar 

  24. Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling. Inf. Comput. 132(2), 85–108 (1997)

    Article  MathSciNet  Google Scholar 

  25. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  26. Kochetov, Y., Kondakov, A.: VNS matheuristic for a bin packing problem with a color constraint. Electron. Notes Discrete Math. 58, 39–46 (2017)

    Article  MathSciNet  Google Scholar 

  27. Kondakov, A., Kochetov, Y.: A core heuristic and the branch-and-price method for a bin packing problem with a color constraint. In: Eremeev, A., Khachay, M., Kochetov, Y., Pardalos, P. (eds.) OPTA 2018. CCIS, vol. 871, pp. 309–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93800-4_25

    Chapter  Google Scholar 

  28. Lozano, L., Bergman, D., Smith, J.C.: On the consistent path problem (2018)

    Google Scholar 

  29. Matsumoto, K., Hatano, K., Takimoto, E.: Decision diagrams for solving a job scheduling problem under precedence constraints. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 103. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Saarbrücken (2018)

    Google Scholar 

  30. Miller, D.M., Drechsler, R.: Implementing a multiple-valued decision diagram package. In: Proceedings of the 28th IEEE International Symposium on Multiple-Valued Logic, pp. 52–57. IEEE (1998)

    Google Scholar 

  31. Muritiba, A.E.F., Iori, M., Malaguti, E., Toth, P.: Algorithms for the bin packing problem with conflicts. INFORMS J. Comput. 22(3), 401–415 (2010)

    Article  MathSciNet  Google Scholar 

  32. Peeters, M., Degraeve, Z.: The co-printing problem: a packing problem with a color constraint. Oper. Res. 52(4), 623–638 (2004)

    Article  MathSciNet  Google Scholar 

  33. Raghunathan, A.U., Bergman, D., Hooker, J., Serra, T., Kobori, S.: Seamless multimodal transportation scheduling (2018)

    Google Scholar 

  34. Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price algorithm. INFORMS J. Comput. 25(2), 244–255 (2013)

    Article  MathSciNet  Google Scholar 

  35. Shachnai, H., Tamir, T.: Polynomial time approximation schemes for class-constrained packing problems. J. Sched. 4(6), 313–338 (2001)

    Article  MathSciNet  Google Scholar 

  36. Shachnai, H., Tamir, T.: Tight bounds for online class-constrained packing. Theoret. Comput. Sci. 321(1), 103–123 (2004)

    Article  MathSciNet  Google Scholar 

  37. Trick, M.A.: A dynamic programming approach for consistency and propagation for knapsack constraints. Ann. Oper. Res. 118(1), 73–84 (2003). https://doi.org/10.1023/A:1021801522545

    Article  MathSciNet  MATH  Google Scholar 

  38. Xavier, E.C., Miyazawa, F.K.: The class constrained bin packing problem with applications to video-on-demand. Theoret. Comput. Sci. 393(1–3), 240–259 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bergman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bergman, D., Cardonha, C., Mehrani, S. (2019). Binary Decision Diagrams for Bin Packing with Minimum Color Fragmentation. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics